A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion

Atlases encode valuable anatomical and functional information from a population. In this work, a bi-ventricular cardiac atlas was built from a unique data set, which consists of high resolution cardiac MR images of 1000+ normal subjects. Based on the atlas, statistical methods were used to study the variation of cardiac shapes and the distribution of cardiac motion across the spatio-temporal domain. We have shown how statistical parametric mapping (SPM) can be combined with a general linear model to study the impact of gender and age on regional myocardial wall thickness. Finally, we have also investigated the influence of the population size on atlas construction and atlas-based analysis. The high resolution atlas, the statistical models and the SPM method will benefit more studies on cardiac anatomy and function analysis in the future.

[1]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[2]  Leo Grady,et al.  Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations , 2013, International Journal of Computer Vision.

[3]  Alejandro F. Frangi,et al.  An Atlas for Cardiac MRI Regional Wall Motion and Infarct Scoring , 2012, STACOM.

[4]  Olivier Ecabert,et al.  Automatic Model-Based Segmentation of the Heart in CT Images , 2008, IEEE Transactions on Medical Imaging.

[5]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[6]  Alain Trouvé,et al.  Bayesian template estimation in computational anatomy , 2008, NeuroImage.

[7]  Warren J Manning,et al.  Gender differences and normal left ventricular anatomy in an adult population free of hypertension. A cardiovascular magnetic resonance study of the Framingham Heart Study Offspring cohort. , 2002, Journal of the American College of Cardiology.

[8]  Alejandro F. Frangi,et al.  Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes , 2013, Medical Image Anal..

[9]  Alejandro F Frangi,et al.  Computational Anatomy Atlas of the Heart , 2007, 2007 5th International Symposium on Image and Signal Processing and Analysis.

[10]  Françoise J. Prêteux,et al.  Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI , 2004, SPIE Medical Imaging.

[11]  W. Edwards,et al.  Age-related changes in normal human hearts during the first 10 decades of life. Part II (Maturity): A quantitative anatomic study of 765 specimens from subjects 20 to 99 years old. , 1988, Mayo Clinic proceedings.

[12]  Nicolas Duchateau,et al.  Which Reorientation Framework for the Atlas-Based Comparison of Motion from Cardiac Image Sequences? , 2012, STIA.

[13]  Bennett A Landman,et al.  Non-local statistical label fusion for multi-atlas segmentation , 2013, Medical Image Anal..

[14]  Daniel Rueckert,et al.  Spatial transformation of motion and deformation fields using nonrigid registration , 2004, IEEE Transactions on Medical Imaging.

[15]  Daniel Rueckert,et al.  Population-based studies of myocardial hypertrophy: high resolution cardiovascular magnetic resonance atlases improve statistical power , 2014, Journal of Cardiovascular Magnetic Resonance.

[16]  Michael I. Miller,et al.  Transport of Relational Structures in Groups of Diffeomorphisms , 2008, Journal of Mathematical Imaging and Vision.

[17]  Alejandro F Frangi,et al.  Computational cardiac atlases: from patient to population and back , 2009, Experimental physiology.

[18]  Alejandro F. Frangi,et al.  Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling , 2002, IEEE Transactions on Medical Imaging.

[19]  S. Hayasaka,et al.  Power and sample size calculation for neuroimaging studies by non-central random field theory , 2007, NeuroImage.

[20]  Maxime Sermesant,et al.  Spatio-Temporal Tensor Decomposition of a Polyaffine Motion Model for a Better Analysis of Pathological Left Ventricular Dynamics , 2015, IEEE Transactions on Medical Imaging.

[21]  B. Norrving,et al.  Global atlas on cardiovascular disease prevention and control. , 2011 .

[22]  Daniel Rueckert,et al.  A Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration Refinement: Application to Cardiac MR Images , 2013, IEEE Transactions on Medical Imaging.

[23]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[24]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[25]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[26]  Xavier Pennec,et al.  Efficient Parallel Transport of Deformations in Time Series of Images: From Schild’s to Pole Ladder , 2013, Journal of Mathematical Imaging and Vision.

[27]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[28]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[29]  J. Cleland,et al.  Left ventricular morphology, global and longitudinal function in normal older individuals: a cardiac magnetic resonance study. , 2006, International journal of cardiology.

[30]  Karl J. Friston,et al.  How Many Subjects Constitute a Study? , 1999, NeuroImage.

[31]  Karsten Mueller,et al.  The General Linear Model , 2015 .

[32]  Alejandro F. Frangi,et al.  SPM to the heart: Mapping of 4D continuous velocities for motion abnormality quantification , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[33]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Avan Suinesiaputra,et al.  Left ventricular shape variation in asymptomatic populations: the multi-ethnic study of atherosclerosis , 2014, Journal of Cardiovascular Magnetic Resonance.

[35]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. , 2002, Circulation.

[36]  Alejandro F. Frangi,et al.  Bilinear Models for Spatio-Temporal Point Distribution Analysis , 2009, 2007 IEEE 11th International Conference on Computer Vision.

[37]  Daniel Rueckert,et al.  Temporal sparse free-form deformations , 2013, Medical Image Anal..

[38]  Daniel Rueckert,et al.  Cardiac Image Super-Resolution with Global Correspondence Using Multi-Atlas PatchMatch , 2013, MICCAI.

[39]  Alejandro F. Frangi,et al.  A framework for the merging of pre-existing and correspondenceless 3D statistical shape models , 2014, Medical Image Anal..

[40]  Nicholas Ayache,et al.  A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images , 2014, Medical Image Anal..

[41]  Alejandro F. Frangi,et al.  Automated Detection of Regional Wall Motion Abnormalities Based on a Statistical Model Applied to Multislice Short-Axis Cardiac MR Images , 2009, IEEE Transactions on Medical Imaging.

[42]  Alejandro F. Frangi,et al.  Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration , 2001, MICCAI.

[43]  P. Thomas Fletcher,et al.  Bayesian Estimation of Regularization and Atlas Building in Diffeomorphic Image Registration , 2013, IPMI.

[44]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[45]  Daniel Rueckert,et al.  Construction of a Statistical Model for Cardiac Motion Analysis Using Nonrigid Image Registration , 2003, IPMI.

[46]  Gene H. Golub,et al.  Matrix computations , 1983 .

[47]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[48]  Alistair A. Young,et al.  Big Heart Data: Advancing Health Informatics Through Data Sharing in Cardiovascular Imaging , 2015, IEEE Journal of Biomedical and Health Informatics.

[49]  Sébastien Ourselin,et al.  A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI , 2010, IEEE Transactions on Medical Imaging.

[50]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[51]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[52]  Pablo Lamata,et al.  An accurate, fast and robust method to generate patient-specific cubic Hermite meshes , 2011, Medical Image Anal..

[53]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[54]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[55]  Michael I. Miller,et al.  Time sequence diffeomorphic metric mapping and parallel transport track time-dependent shape changes , 2009, NeuroImage.

[56]  Alejandro F. Frangi,et al.  A High-Resolution Atlas and Statistical Model of the Human Heart From Multislice CT , 2013, IEEE Transactions on Medical Imaging.

[57]  Alejandro F. Frangi,et al.  A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities , 2011, Medical Image Anal..

[58]  Scott D Flamm,et al.  Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) Board of Trustees Task Force on Standardized Post Processing , 2013, Journal of Cardiovascular Magnetic Resonance.

[59]  Frank G. Shellock,et al.  Reference Manual for Magnetic Resonance Safety, Implants, and Devices , 2009 .

[60]  M. Cerqueira,et al.  Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association , 2002, The international journal of cardiovascular imaging.

[61]  Daniel Rueckert,et al.  A dynamic 4D probabilistic atlas of the developing brain , 2011, NeuroImage.

[62]  Alistair A. Young,et al.  The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart , 2011, Bioinform..

[63]  Daniel Rueckert,et al.  Construction of a 4D Statistical Atlas of the Cardiac Anatomy and Its Use in Classification , 2005, MICCAI.

[64]  Koen Van Leemput,et al.  Encoding Probabilistic Brain Atlases Using Bayesian Inference , 2009, IEEE Transactions on Medical Imaging.

[65]  Juha Koikkalainen,et al.  Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images , 2004, Medical Image Anal..

[66]  L. Younes Jacobi fields in groups of diffeomorphisms and applications , 2007 .

[67]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[68]  Daniel Rueckert,et al.  Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm , 2003, MICCAI.

[69]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[70]  Hervé Delingette,et al.  Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population , 2012, IEEE Transactions on Medical Imaging.

[71]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.