Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations

Abstract This paper presents a general, integrated model of the spindle bearing and machine tool system, consisting of a rotating shaft, tool holder, angular contact ball bearings, housing, and the machine tool mounting. The model allows virtual cutting of a work material with the numerical model of the spindle during the design stage. The proposed model predicts bearing stiffness, mode shapes, frequency response function (FRF), static and dynamic deflections along the cutter and spindle shaft, as well as contact forces on the bearings with simulated cutting forces before physically building and testing the spindles. The proposed models are verified experimentally by conducting comprehensive tests on an instrumented-industrial spindle. The study shows that the accuracy of predicting the performance of the spindles require integrated modeling of all spindle elements and mounting on the machine tool. The operating conditions of the spindle, such as bearing preload, spindle speeds, cutting conditions and work material properties affect the frequency and amplitude of vibrations during machining.