An extremal problem for Graham-Rothschild parameter words

This paper exposes connections between the theory of Möbius functions and extremal problems, extending ideas of Frankl and Pach [8]. Extremal results concerning the trace of objects in geometric lattices and Graham—Rothschild parameter posets are proved, covering previous results due to Sauer [16] and Perles and Shelah [17].

[1]  Jack E. Graver,et al.  The Module Structure of Integral Designs , 1973, J. Comb. Theory, Ser. A.

[2]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[3]  Noga Alon,et al.  On the density of sets of vectors , 1983, Discret. Math..

[4]  Peter Frankl,et al.  On the Trace of Finite Sets , 1983, J. Comb. Theory, Ser. A.

[5]  Peter Frankl,et al.  Linear Dependencies among Subsets of a Finite Set , 1983, Eur. J. Comb..

[6]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[7]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[8]  Mark G. Karpovsky,et al.  Coordinate density of sets of vectors , 1978, Discret. Math..

[9]  Shuo-Yen Robert Li,et al.  On the Structure of t-Designs , 1980, SIAM J. Algebraic Discret. Methods.

[10]  N. Alon,et al.  Embedding ofl∞k in finite dimensional Banach spaces , 1983 .

[11]  János Pach,et al.  On the Number of Sets in a Null t-Design , 1983, Eur. J. Comb..

[12]  P. Frankl,et al.  On functions of strengtht , 1983 .

[13]  R. Graham,et al.  Ramsey’s theorem for $n$-parameter sets , 1971 .

[14]  P. Frankl,et al.  On the vector space of 0-configurations , 1982, Comb..

[15]  L. Weisner,et al.  Abstract theory of inversion of finite series , 1935 .

[16]  B. Voigt,et al.  A combinatorial interpretation of (1/k!)Deltaktn , 1989, Discret. Math..

[17]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.