Quantitative neuroanatomy for connectomics in Drosophila

Neuronal circuit mapping using electron microscopy demands laborious proofreading or reconciliation of multiple independent reconstructions. Here, we describe new methods to apply quantitative arbor and network context to iteratively proofread and reconstruct circuits and create anatomically-enriched wiring diagrams. We measured the morphological underpinnings of connectivity in new and existing reconstructions of Drosophila sensorimotor (larva) and visual (adult) systems. Synaptic inputs were preferentially located on numerous small, microtubule-free “twigs” which branch off a single microtubule-containing “backbone”. Omission of individual twigs accounted for 96% of errors. However, the synapses of highly connected neurons were distributed across multiple twigs. Thus the robustness of a strong connection to detailed twig anatomy was associated with robustness to reconstruction error. By comparing iterative reconstruction to the consensus of multiple reconstructions, we show that our method overcomes the need for redundant effort through the discovery and application of relationships between cellular neuroanatomy and synaptic connectivity.

[1]  T. Sato,et al.  A modified method for lead staining of thin sections. , 1968, Journal of electron microscopy.

[2]  M. Burrows,et al.  A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[4]  T. Jegla,et al.  Neuronal polarity: an evolutionary perspective , 2015, Journal of Experimental Biology.

[5]  C. Koch,et al.  Multiplicative computation in a visual neuron sensitive to looming , 2002, Nature.

[6]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[7]  R. Kerr,et al.  Discovery of Brainwide Neural-Behavioral Maps via Multiscale Unsupervised Structure Learning , 2014, Science.

[8]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[9]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[10]  Matthew Cook,et al.  Efficient automatic 3D-reconstruction of branching neurons from EM data , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[12]  Stephan Saalfeld,et al.  CATMAID: collaborative annotation toolkit for massive amounts of image data , 2009, Bioinform..

[13]  Yuh Nung Jan,et al.  Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae , 2007, Proceedings of the National Academy of Sciences.

[14]  John B. Thomas,et al.  A sensory feedback circuit coordinates muscle activity in Drosophila , 2007, Molecular and Cellular Neuroscience.

[15]  R. Douglas,et al.  Stereotypical Bouton Clustering of Individual Neurons in Cat Primary Visual Cortex , 2007, The Journal of Neuroscience.

[16]  Aljoscha Nern,et al.  Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system , 2015, Proceedings of the National Academy of Sciences.

[17]  M. Bate,et al.  The Origin, Location, and Projections of the Embryonic Abdominal Motorneurons of Drosophila , 1997, The Journal of Neuroscience.

[18]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[19]  R. Schmidt,et al.  Presynaptic inhibition in the vertebrate spinal cord revisited , 1999, Experimental Brain Research.

[20]  Srinivas C. Turaga,et al.  Machines that learn to segment images: a crucial technology for connectomics , 2010, Current Opinion in Neurobiology.

[21]  M. Suster,et al.  Embryonic assembly of a central pattern generator without sensory input , 2002, Nature.

[22]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[23]  Qian Cai,et al.  Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration , 2012, Nature Reviews Neuroscience.

[24]  Louis K. Scheffer,et al.  Minimizing Manual Image Segmentation Turn-Around Time for Neuronal Reconstruction by Embracing Uncertainty , 2012, PloS one.

[25]  M. Deschenes,et al.  Dendrodendritic and Axoaxonic Synapses in the Thalamic Reticular Nucleus of the Adult Rat , 1997, The Journal of Neuroscience.

[26]  M. Burrows Local circuits for the control of leg movements in an insect , 1992, Trends in Neurosciences.

[27]  F. Clarac,et al.  Invertebrate presynaptic inhibition and motor control , 1996, Experimental Brain Research.

[28]  Matthias Landgraf,et al.  Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. , 2003, Developmental biology.

[29]  Louis K. Scheffer,et al.  Semi-automated reconstruction of neural circuits using electron microscopy , 2010, Current Opinion in Neurobiology.

[30]  Nathan W. Gouwens,et al.  Signal Propagation in Drosophila Central Neurons , 2009, The Journal of Neuroscience.

[31]  J. Ule,et al.  Protein–RNA interactions: new genomic technologies and perspectives , 2012, Nature Reviews Genetics.

[32]  Anchi Cheng,et al.  Automated molecular microscopy: the new Leginon system. , 2005, Journal of structural biology.

[33]  Konrad Kording,et al.  Automatic discovery of cell types and microcircuitry from neural connectomics , 2014, eLife.

[34]  A. Light,et al.  The ultrastructure of group Ia afferent fiber synapses in the lumbosacral spinal cord of the cat , 1984, Brain Research.

[35]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[36]  Gaia Tavosanis,et al.  Synaptic organization in the adult Drosophila mushroom body calyx , 2009, The Journal of comparative neurology.

[37]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  Z. Mainen,et al.  Early events in olfactory processing. , 2006, Annual review of neuroscience.

[39]  G. Knott,et al.  Supervoxel-Based Segmentation of EM Image Stacks with Learned Shape Features , 2010 .

[40]  H. Seung,et al.  Neuronal Cell Types and Connectivity: Lessons from the Retina , 2014, Neuron.

[41]  Pascal Fua,et al.  Learning Context Cues for Synapse Segmentation in EM Volumes , 2012, MICCAI.

[42]  G. Laurent,et al.  Role of GABAergic Inhibition in Shaping Odor-Evoked Spatiotemporal Patterns in the Drosophila Antennal Lobe , 2005, The Journal of Neuroscience.

[43]  M. Helmstaedter Cellular-resolution connectomics: challenges of dense neural circuit reconstruction , 2013, Nature Methods.

[44]  Eric L. Miller,et al.  Segmentation fusion for connectomics , 2011, 2011 International Conference on Computer Vision.

[45]  Takako Morimoto,et al.  A Group of Segmental Premotor Interneurons Regulates the Speed of Axial Locomotion in Drosophila Larvae , 2014, Current Biology.

[46]  Matthias Landgraf,et al.  Development of Connectivity in a Motoneuronal Network in Drosophila Larvae , 2015, Current Biology.

[47]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[48]  Chung-Hui Yang,et al.  Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology , 2007, Development.

[49]  Andreas Prokop,et al.  Are dendrites in Drosophila homologous to vertebrate dendrites? , 2005, Developmental biology.

[50]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[51]  Pascal Fua,et al.  Supervoxel-Based Segmentation of Mitochondria in EM Image Stacks With Learned Shape Features , 2012, IEEE Transactions on Medical Imaging.

[52]  Fred A. Hamprecht,et al.  Automated Detection of Synapses in Serial Section Transmission Electron Microscopy Image Stacks , 2014, PloS one.

[53]  Shawn R. Lockery,et al.  Characterization of Drosophila Larval Crawling at the Level of Organism, Segment, and Somatic Body Wall Musculature , 2012, The Journal of Neuroscience.

[54]  Johanna Beyer,et al.  Design and Evaluation of Interactive Proofreading Tools for Connectomics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[55]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[56]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[57]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[58]  Shawn R. Olsen,et al.  Lateral presynaptic inhibition mediates gain control in an olfactory circuit , 2008, Nature.

[59]  Srinivas C. Turaga,et al.  Connectomic reconstruction of the inner plexiform layer in the mouse retina , 2013, Nature.

[60]  Liqun Luo,et al.  Small GTPase Cdc42 Is Required for Multiple Aspects of Dendritic Morphogenesis , 2003, The Journal of Neuroscience.

[61]  Matthias Landgraf,et al.  Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[62]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[63]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[64]  Pascal Fua,et al.  Learning Context Cues for Synapse Segmentation , 2013, IEEE Transactions on Medical Imaging.

[65]  N. Randel,et al.  Inter-individual stereotypy of the Platynereis larval visual connectome , 2015, eLife.

[66]  A. Cardona,et al.  Elastic volume reconstruction from series of ultra-thin microscopy sections , 2012, Nature Methods.

[67]  Marta Zlatic,et al.  Positional Cues in the Drosophila Nerve Cord: Semaphorins Pattern the Dorso-Ventral Axis , 2009, PLoS biology.

[68]  Mark H Ellisman,et al.  The Micro-Architecture of Mitochondria at Active Zones: Electron Tomography Reveals Novel Anchoring Scaffolds and Cristae Structured for High-Rate Metabolism , 2010, The Journal of Neuroscience.

[69]  Ashok Veeraraghavan,et al.  Increasing depth resolution of electron microscopy of neural circuits using sparse tomographic reconstruction , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[70]  R. Levine,et al.  Role of intrinsic properties in Drosophila motoneuron recruitment during fictive crawling. , 2010, Journal of neurophysiology.

[71]  William R. Gray Roncal,et al.  Saturated Reconstruction of a Volume of Neocortex , 2015, Cell.

[72]  Matthias Landgraf,et al.  Genetic Specification of Axonal Arbors atonal Regulates robo3 to Position Terminal Branches in the Drosophila Nervous System , 2003, Neuron.

[73]  Johannes E. Schindelin,et al.  Identifying Neuronal Lineages of Drosophila by Sequence Analysis of Axon Tracts , 2010, The Journal of Neuroscience.

[74]  Sen Song,et al.  A genetic and computational approach to structurally classify neuronal types , 2014, Nature Communications.

[75]  Luca Maria Gambardella,et al.  Candidate Sampling for Neuron Reconstruction from Anisotropic Electron Microscopy Volumes , 2014, MICCAI.

[76]  Tomoko Ohyama,et al.  A Combinatorial Semaphorin Code Instructs the Initial Steps of Sensory Circuit Assembly in the Drosophila CNS , 2011, Neuron.

[77]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[78]  Omotara Ogundeyi,et al.  A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. , 2014, Cell reports.

[79]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[80]  Fred A. Hamprecht,et al.  Automated Detection and Segmentation of Synaptic Contacts in Nearly Isotropic Serial Electron Microscopy Images , 2011, PloS one.

[81]  Cengiz Günay,et al.  Distal Spike Initiation Zone Location Estimation by Morphological Simulation of Ionic Current Filtering Demonstrated in a Novel Model of an Identified Drosophila Motoneuron , 2015, PLoS Comput. Biol..

[82]  Mark Newman,et al.  Networks: An Introduction , 2010 .