Before enzymes and templates: theory of surface metabolism.

Woese's three kingdoms (161-166) constitute the deepest branching of the known biosphere. His suggestion to search for a common ancestor has led to the present hypothesis. It is proposed here that, at an early stage of evolution, there are precursor organisms drastically different from anything we know. These organisms are acellular and lack a mechanism for division, yet they can grow. They possess neither enzymes nor a mechanism for translation, but they do have an autocatalytic metabolism. They do not have nucleic acids or any other template, yet they have inheritance and selection. Although they can barely be called living, they have a capacity for evolution. Central to the proposed theory is the idea that life at this early stage is autotrophic (cf. reference 53) and consists of an autocatalytic metabolism confined to an essentially twodimensional monomolecular organic layer. These surface organisms (surface metabolists) are anionically bonded to positively charged surfaces (e.g., pyrite) at the interface of hot water. The adherence to the positively charged mineral surface is not the result of adsorption ( as suggested by Bernal [6] in his clay theory) but rather of in situ autotrophic growth of anionic constituents acquiring their surface bonding in statu nascendi. Instead of adsorption, the organism is faced with desorption, that is, a selective detachment of its constituents. This means a negative selection favoring higher anionic bonding strength. Large polyanionic constituents with ever stronger surface bonding are automatically selected: first, polyanionic coenzymes, and eventually nucleic acids and polypeptides. The primitive surface metabolists grow by spreading onto vacant surfaces; they reproduce by

[1]  林继红,et al.  古细菌(Archaebacteria)表面糖蛋白 , 1990 .

[2]  J. Bada,et al.  Submarine hot springs and the origin of life , 1988, Nature.

[3]  G. Wächtershäuser,et al.  Pyrite Formation, the First Energy Source for Life: a Hypothesis , 1988 .

[4]  Brian W. Matthews,et al.  Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3 , 1988, Nature.

[5]  Boguslaw Stec,et al.  Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor , 1988, Nature.

[6]  Roger W. Hendrix,et al.  Homologous plant and bacterial proteins chaperone oligomeric protein assembly , 1988, Nature.

[7]  P. Sigler,et al.  Acid blobs and negative noodles , 1988, Nature.

[8]  Paul Schimmel,et al.  A simple structural feature is a major determinant of the identity of a transfer RNA , 1988, Nature.

[9]  K. Stetter Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria , 1988 .

[10]  W. Leinfelder,et al.  Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine , 1988, Nature.

[11]  G. Wächtershäuser,et al.  An all-purine precursor of nucleic acids. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Premakumar,et al.  Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii , 1988, Journal of bacteriology.

[13]  D. Söll,et al.  Protein biosynthesis in organelles requires misaminoacylation of tRNA , 1988, Nature.

[14]  A. Eschenmoser Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur† , 1988 .

[15]  C. Chothia Protein structure: the 14th barrel rolls out. , 1988, Nature.

[16]  A. Weiner,et al.  tRNA-like structures tag the 3' ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Higgins Data for Biochemical Research, 3rd Edition , 1987 .

[18]  H. Follmann,et al.  Ribonucleotide reductase in cell extracts of Methanobacterium thermoautotrophicum , 1987 .

[19]  A W Schwartz,et al.  The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Cech The chemistry of self-splicing RNA and RNA enzymes. , 1987, Science.

[21]  R. Hill,et al.  The regiochemistry and stereochemistry of the biosynthesis of vitamin B6 from triose units. , 1987, The Journal of biological chemistry.

[22]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[23]  K. Stetter,et al.  Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of Archaebacteria , 1987, Science.

[24]  W. Whitman,et al.  Methanogens and the diversity of archaebacteria. , 1987, Microbiological reviews.

[25]  P. Schimmel,et al.  Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. , 1987, Annual review of biochemistry.

[26]  B. Ganem RNA world , 1987, Nature.

[27]  T. Mizutani,et al.  Possible incorporation of phosphoserine into globin readthrough protein via bovine opal suppressor phosphoseryl‐tRNA , 1986, FEBS letters.

[28]  D. Söll,et al.  The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA , 1986, Nature.

[29]  A. Iwashima,et al.  Some properties of a Saccharomyces cerevisiae mutant resistant to 2-amino-4-methyl-5-beta-hydroxyethylthiazole. , 1986, Journal of general microbiology.

[30]  Robert L. White,et al.  Thiamin biosynthesis in Saccharomyces cerevisiae: origin of the pyrimidine unit , 1986 .

[31]  D. Searcy Some features of thermo-acidophilic archaebacteria preadaptive for the evolution of eukaryotic cells , 1986 .

[32]  Manfred Eigen,et al.  Template-free RNA synthesis by Qβ replicase , 1986, Nature.

[33]  M. Danson,et al.  Metabolism of glucose via a modified Entner‐Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1986 .

[34]  Robert Shapiro,et al.  Origins: A Skeptic's Guide to the Creation of Life on Earth , 1986 .

[35]  H. Follmann Have deoxyribonucleotides and DNA been among the earliest biomolecules? , 1986, Advances in space research : the official journal of the Committee on Space Research.

[36]  T. Cech,et al.  Biological catalysis by RNA. , 1986, Annual review of biochemistry.

[37]  M. de Rosa,et al.  Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1984, The Biochemical journal.

[38]  B. Estramareix,et al.  Biosynthesis of thiamin: 5-aminoimidazole ribotide as the precursor of all the carbon atoms of the pyrimidine moiety , 1984 .

[39]  S. Altman,et al.  Catalytic activity of an RNA molecule prepared by transcription in vitro. , 1984, Science.

[40]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[41]  E. Stackebrandt,et al.  Pyrodictium gen. nov., a New Genus of Submarine Disc-Shaped Sulphur Reducing Archaebacteria Growing Optimally at 105°C. , 1983, Systematic and applied microbiology.

[42]  R. Thauer,et al.  Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum. , 1983, European journal of biochemistry.

[43]  W. Zillig,et al.  Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria , 1983, Nature.

[44]  Karl Raimund Sir Popper,et al.  Realism and the aim of science , 1983 .

[45]  K. Stetter Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C , 1982, Nature.

[46]  D. Hatfield,et al.  Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Robert L. White,et al.  Thiamin biosynthesis in yeast. Origin of the five-carbon unit of the thiazole moiety , 1982 .

[48]  Carl R. Woese,et al.  Archaebacteria and Cellular Origins: An Overview , 1982 .

[49]  O. Kandler Cell Wall Structures and their Phylogenetic Implications , 1982 .

[50]  S Nasu,et al.  L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. , 1982, The Journal of biological chemistry.

[51]  K. Popper,et al.  The open universe : an argument for indeterminism , 1982 .

[52]  Karl Raimund Sir Popper,et al.  Quantum theory and the schism in physics , 1982 .

[53]  A. Cairns-smith Genetic takeover and the mineral origins of life , 1982 .

[54]  G A King Recycling, reproduction, and life's origins. , 1982, Bio Systems.

[55]  W. Zillig,et al.  Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras , 1981 .

[56]  O. Kandler,et al.  Evidence for autotrophic CO2 assimilation in Sulfolobus brierleyi via a reductive carboxylic acid pathway , 1981 .

[57]  H. Kuhn,et al.  Molekulare Selbstorganisation und Ursprung des Lebens , 1981 .

[58]  O. Kandler Historical perspectives on queries concerning photo phosphorylation , 1981 .

[59]  R. Wall,et al.  A mechanism for RNA splicing. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Wong,et al.  Role of minimization of chemical distances between amino acids in the evolution of the genetic code. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Stephen M. Mount,et al.  Are snRNPs involved in splicing? , 1980, Nature.

[62]  G. Shaw,et al.  Purines, pyrimidines, and imidazoles part 54. Interconversion of some intermediates in the de novo biosynthesis of purine nucleotides , 1980 .

[63]  G. A. King Evolution of the coenzymes. , 1980, Bio Systems.

[64]  G. Ourisson,et al.  Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[65]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[66]  T. Langworthy,et al.  Long-chain diglycerol tetraethers from Thermoplasma acidophilum. , 1977, Biochimica et biophysica acta.

[67]  B. Giese Grundlagen und Grenzen des Reaktivitäts‐Selektivitätsprinzips , 1977 .

[68]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[69]  M. Rosa,et al.  Chemical structure of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group , 1977 .

[70]  J. Wong The evolution of a universal genetic code. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. Wong A co-evolution theory of the genetic code. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[72]  M. Yčas,et al.  On earlier states of the biochemical system. , 1974, Journal of theoretical biology.

[73]  J. N. Lowe,et al.  An introduction to biochemical reaction mechanisms , 1974 .

[74]  H. Kröger,et al.  [Protein synthesis]. , 1974, Fortschritte der Medizin.

[75]  L. Hochstein The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. , 1974, Canadian journal of microbiology.

[76]  R. Swinburne OBJECTIVE KNOWLEDGE: AN EVOLUTIONARY APPROACH , 1973 .

[77]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[78]  H. Kuhn,et al.  Selbstorganisation molekularer Systeme und die Evolution des genetischen Apparats , 1972 .

[79]  F. Rowell,et al.  Biosynthesis of Vitamin B6 , 1972 .

[80]  F. Fanale A case for catastrophic early degassing of the earth. , 1971 .

[81]  W. Jencks,et al.  Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. Katchalsky,et al.  Prebiotic Synthesis of Polypeptides by Heterogeneous Polycondensation of Amino-acid Adenylates , 1970, Nature.

[83]  L. Orgel Evolution of the genetic apparatus. , 1968, Journal of molecular biology.

[84]  M. Wilcox,et al.  Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[85]  F. H. C. CRICK,et al.  Origin of the Genetic Code , 1967, Nature.

[86]  G. Shaw,et al.  Further chemical interconversions of intermediates in the sequence of biosynthesis de novo of purine nucleotides leading to imidazole nucleotides , 1967 .

[87]  R. Laursen,et al.  Polynucleotide analogues. VIII. Poly 3-isoadenylic acid. , 1966, Biochimica et biophysica acta.

[88]  F. Crick Codon--anticodon pairing: the wobble hypothesis. , 1966, Journal of molecular biology.

[89]  R. B. Clayton Biosynthesis of sterols, steroids, and terpenoids. Part I. Biogenesis of cholesterol and the fundamental steps in terpenoid biosynthesis , 1965 .

[90]  F. Lipmann,et al.  Projecting Backward from the Present Stage of Evolution of Biosynthesis , 1965 .

[91]  F. Sanger,et al.  N-Formyl-methionyl-S-RNA , 1964 .

[92]  H. C. Wood,et al.  Biogenese ähnliche Cyclisierung eines Terpenphosphates , 1964 .

[93]  K. Popper,et al.  Conjectures and refutations;: The growth of scientific knowledge , 1972 .

[94]  R. Mayer,et al.  Die basenkatalysierte Umsetzung von Ketonen mit Schwefelwasserstoff , 1963 .

[95]  S. Fox,et al.  The Thermal Copolymerization of Amino Acids Common to Protein1 , 1960 .

[96]  C. Darwin The Life and Letters of Charles Darwin , 1959, The Yale Journal of Biology and Medicine.

[97]  The Problem of Stages in Biopoesis , 1959 .

[98]  Ronald Breslow,et al.  On the Mechanism of Thiamine Action. IV.1 Evidence from Studies on Model Systems , 1958 .

[99]  J. D. Bernal,et al.  “The Origins of Life” , 1957, Nature.

[100]  Stanley L. Miller,et al.  Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .

[101]  S. Miller A production of amino acids under possible primitive earth conditions. , 1953, Science.

[102]  M. B. Gordon,et al.  Calculated Values for the Solubility Product Constants of the Metallic Sulfides , 1952 .

[103]  A. D. Ritchie The Open Society and its Enemies , 1946, Nature.

[104]  N H Horowitz,et al.  On the Evolution of Biochemical Syntheses. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[105]  E B Wilson,et al.  On the physical basis of life , 2010 .

[106]  F. Paneth,et al.  Über Adsorptionsversuche mit Radioelementen , 1914 .