Relativistic effects in molecules: pseudopotential calculations for TIH+, TIH and TIH3

Nonrelativistic, relativistic and semiempirical pseudopotentials have been used for investigating the effects of relativity and correlation on molecular properties (bond lengths, dissociation energies, force constants, multipole moments and ionization energies) of TIH+, TIH and TIH3. Spin-orbit effects are taken into account by using a quasirelativistic two-component pseudopotential. The influence of the core-valence correlation is accounted for by a core-polarization potential. Results obtained with the semiempirical pseudopotentials are in good agreement with experiment.

[1]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[2]  Y. Ishikawa,et al.  Effective core potentials for fully relativistic Dirac–Fock calculations , 1981 .

[3]  Hermann Stoll,et al.  A proper account of core-polarization with pseudopotentials: single valence-electron alkali compounds , 1982 .

[4]  Peter Schwerdtfeger,et al.  Relativistic and correlation effects in pseudopotential calculations for Br, I, HBr, HI, Br2, and I2 , 1986 .

[5]  W. Meyer,et al.  Ground‐state properties of alkali dimers and their cations (including the elements Li, Na, and K) from ab initio calculations with effective core polarization potentials , 1984 .

[6]  P. A. Christiansen Dissociation curves for nine low lying states of Tl2 from REP CI calculations , 1983 .

[7]  Stephen Wilson,et al.  Relativistic effects in atoms and molecules , 1988 .

[8]  W. C. Ermler,et al.  Ab initio calculations of potential energy curves of Hg2 and TlHg , 1984 .

[9]  W. J. Stevens,et al.  Effective Potentials in Molecular Quantum Chemistry , 1984 .

[10]  A. D. Buckingham,et al.  Direct Method of Measuring Molecular Quadrupole Moments , 1959 .

[11]  H. Basch,et al.  Relativistic effects in ab initio effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH , 1979 .

[12]  W. Meyer,et al.  Treatment of intershell correlation effects in ab initio calculations by use of core polarization potentials. Method and application to alkali and alkaline earth atoms , 1984 .

[13]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[14]  W. C. Ermler,et al.  Abinitio effective core potentials including relativistic effects. V. SCF calculations with ω–ω coupling including results for Au2+, TlH, PbS, and PbSe , 1980 .

[15]  L. Wayne Fullerton,et al.  Accurate and Efficient Methods for the Evaluation of Vacuum Polarization Potentials of Order Z alpha and Z alpha**2 , 1976 .

[16]  J. Pople,et al.  CORRIGENDUM: Theoretical Studies of the Kerr Effect: I - Deviations from a Linear Polarization Law , 1955 .

[17]  J. G. Snijders,et al.  Is the relativistic contraction of bond lengths an orbital-contraction effect? , 1980 .

[18]  P. Fuentealba,et al.  Cu and Ag as one‐valence‐electron atoms: Pseudopotential results for Cu2, Ag2, CuH, AgH, and the corresponding cations , 1983 .

[19]  P. Millié,et al.  Three-electron approach of HgH using relativistic effective core, core polarization and spin-orbit operators: the low-lying states , 1986 .

[20]  E. Canadell,et al.  Theoretical analysis of bonding in monomeric and polymeric C5H5M compounds , 1984 .

[21]  P. Fuentealba,et al.  Pseudopotential calculations on Rb+2, Cs+2, RbH+, CsH+ and the mixed alkali dimer ions , 1982 .

[22]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[23]  K. Pitzer RELATIVISTIC MODIFICATIONS OF COVALENT BONDING IN HEAVY ELEMENTS: CALCULATIONS FOR TlH , 1981 .

[24]  W. C. Ermler,et al.  Ab initio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms , 1977 .

[25]  B. J. McKenzie,et al.  The transverse electron-electron interaction in atomic structure calculations , 1980 .

[26]  P. Botschwina,et al.  PNO-CEPA calculation of collinear potential energy barriers for thermoneutral exchange reactions , 1977 .

[27]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[28]  J. P. Malrieu,et al.  Localization and Delocalization in Quantum Chemistry , 1975 .

[29]  W. C. Ermler,et al.  AB initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions , 1981 .

[30]  P. Pyykkö,et al.  Dirac—Fock one-centre calculations. The molecules BH, AlH, GaH, InH and TlH , 1976 .

[31]  W. J. Stevens,et al.  Finite-field SCF calculations of the dipole polarisabilities of heavy atoms using relativistic effective potentials , 1983 .

[32]  H. Kurosawa,et al.  DIVISION OF ORGANOMETALLIC CHEMISTRY: MONO‐ AND DIORGANOTHALLIUM CHEMISTRY*,† , 1968 .

[33]  J. B. Collins,et al.  Self‐consistent molecular orbital methods. XVII. Geometries and binding energies of second‐row molecules. A comparison of three basis sets , 1976 .

[34]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[35]  A. Buckingham Molecular quadrupole moments , 1959 .

[36]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[37]  M. Hernandez,et al.  A semi‐empirical MO theory for ionization potentials and electron affinities , 1977 .

[38]  P. Fuentealba,et al.  Cu and Ag as one‐valence‐electron atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, and AgH , 1984 .

[39]  P. A. Christiansen,et al.  Relativistic ab initio molecular structure calculations including configuration interaction with application to six states of TlH , 1982 .

[40]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[41]  P. A. Christiansen ELECTRONIC STRUCTURE FOR THE GROUND STATE OF T1H FROM RELATIVISTIC MULTICONFIGURATION SCF CALCULATIONS , 1980 .

[42]  M. Pélissier,et al.  Ab initio molecular calculations including spin-orbit coupling. I. Method and atomic tests , 1983 .

[43]  W. R. Wadt,et al.  Ab initio studies of AuH, AuCl, HgH and HgCl2 using relativistic effective core potentials , 1978 .

[44]  First order perturbation treatments for relativistic pseudopotentials and corrections to the Hartree-Fock method , 1981 .

[45]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[46]  K. Pitzer Relativistic calculations of dissociation energies and related properties , 1982 .

[47]  W. Schwarz,et al.  Pseudo-potential approach including relativistic effects , 1978 .

[48]  J. R. Wazer,et al.  Application of effective potentials to relativistic hartree—fock calculations , 1978 .

[49]  N. Pyper Relativistic pseudopotential theories and corrections to the Hartree-Fock method , 1980 .

[50]  K. Balasubramanian,et al.  Relativistic configuration interaction calculations of the low‐lying states of TlF , 1985 .

[51]  W. Schwarz,et al.  Molecular spinors from the quasi-relativistic pseudopotential approach , 1979 .

[52]  A. D. McLean,et al.  Theory of Molecular Polarizabilities , 1967 .

[53]  I. P. Grant,et al.  A program to calculate transverse Breit and QED corrections to energy levels in a multiconfiguration Dirac-Fock environment , 1984 .

[54]  P. Fuentealba,et al.  On the reliability of semi-empirical pseudopotentials: simulation of Hartree-Fock and Dirac-Fock results , 1983 .

[55]  Kenneth S. Pitzer,et al.  Electronic structure and dissociation curves for the ground states of Tl2 and Tl2+ from relativistic effective potential calculations , 1981 .

[56]  Peter J. Mohr,et al.  Numerical evaluation of the 1S12-state radiative level shift , 1974 .

[57]  N. Pyper Relativistic modifications of covalent bonding in heavy elements : the kappa valence method , 1980 .

[58]  J. Malrieu,et al.  Theoretical study of the lowest states of CsH and Cs2 , 1983 .

[59]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .