The Influence of Dimensionality on the Charge‐Density‐Wave Transition and its Application on Mid‐Infrared Photodetection

[1]  A. Balandin,et al.  Low‐Frequency Current Fluctuations in Quasi‐1D (TaSe4)2I Weyl Semimetal Nanoribbons , 2022, Advanced Electronic Materials.

[2]  Weike Wang,et al.  High-performance near-infrared photodetector based on quasi one-dimensional layered (TaSe4)2I , 2021, Applied Physics Letters.

[3]  J. Zhang,et al.  Band-selective Holstein polaron in Luttinger liquid material A0.3MoO3 (A = K, Rb) , 2021, Nature Communications.

[4]  Jiyuan Zheng,et al.  Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch , 2021, Nature Communications.

[5]  M. Razeghi,et al.  Mid-wavelength infrared avalanche photodetector with AlAsSb/GaSb superlattice , 2021, Scientific Reports.

[6]  C. Felser,et al.  A charge-density-wave topological semimetal , 2021 .

[7]  Jianhua Zhao,et al.  Highly Sensitive InSb Nanosheets Infrared Photodetector Passivated by Ferroelectric Polymer , 2020, Advanced Functional Materials.

[8]  Yiming Zhu,et al.  Phase Transition Photodetection in Charge Density Wave Tantalum Disulfide. , 2020, Nano letters.

[9]  G. Cheng,et al.  Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature , 2020, Nature Communications.

[10]  Ming Liu,et al.  Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals , 2020, Nature Communications.

[11]  Yunqi Liu,et al.  Distinctive Performance of Terahertz Photodetection Driven by Charge‐Density‐Wave Order in CVD‐Grown Tantalum Diselenide , 2019, Advanced Functional Materials.

[12]  Weida Hu,et al.  Nb2SiTe4: A Stable Narrow-Gap Two-Dimensional Material with Ambipolar Transport and Mid-Infrared Response. , 2019, ACS nano.

[13]  C. Felser,et al.  Axionic charge-density wave in the Weyl semimetal (TaSe4)2I , 2019, Nature.

[14]  C. Sow,et al.  High‐Performance, Room Temperature, Ultra‐Broadband Photodetectors Based on Air‐Stable PdSe2 , 2019, Advanced materials.

[15]  W. Lu,et al.  Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. , 2019, ACS nano.

[16]  Xiaoping Zhou,et al.  Charge Density Wave Phase Transitions in Large-Scale Few-Layer 1T-VTe2 Grown by Molecular Beam Epitaxy. , 2019, ACS applied materials & interfaces.

[17]  Yiming Zhu,et al.  Raman Spectroscopic and Dynamic Electrical Investigation of Multi-State Charge-Wave-Density Phase Transitions in 1 T-TaS2. , 2019, Nano letters.

[18]  Yi Shi,et al.  Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures , 2019, Nature Nanotechnology.

[19]  Qingsheng Zeng,et al.  Light-Tunable 1T-TaS2 Charge-Density-Wave Oscillators. , 2018, ACS nano.

[20]  Xinghua Shi,et al.  Chemical Growth of 1T‐TaS2 Monolayer and Thin Films: Robust Charge Density Wave Transitions and High Bolometric Responsivity , 2018, Advanced materials.

[21]  Yingxin Wang,et al.  Ultrabroadband photosensitivity from visible to terahertz at room temperature , 2018, Science Advances.

[22]  F. Xia,et al.  Air-Stable Room-Temperature Mid-Infrared Photodetectors Based on hBN/Black Arsenic Phosphorus/hBN Heterostructures. , 2018, Nano letters.

[23]  F. Xia,et al.  Widely tunable black phosphorus mid-infrared photodetector , 2017, Nature Communications.

[24]  M. Nakano,et al.  Memristive phase switching in two-dimensional 1T-TaS2 crystals , 2015, Science Advances.

[25]  R. Lake,et al.  All-metallic electrically gated 2H-TaSe2 thin-film switches and logic circuits , 2013, 1312.6863.

[26]  Qi Jie Wang,et al.  Broadband high photoresponse from pure monolayer graphene photodetector , 2013, Nature Communications.

[27]  P. Monceau Electronic crystals: an experimental overview , 2012, 1307.0929.

[28]  Y. Reibel,et al.  Performance of Mid-Wave Infrared HgCdTe e-Avalanche Photodiodes , 2012, Journal of Electronic Materials.

[29]  Daniel Moses,et al.  Nonlinear transport in semiconducting polymers at high carrier densities. , 2009, Nature materials.

[30]  N. Fox,et al.  A comparison of the performance of a photovoltaic HgCdTe detector with that of large area single pixel QWIPs for infrared radiometric applications , 2005 .

[31]  S. Zaitsev-Zotov,et al.  Photoconduction and photocontrolled collective effects in the Peierls conductor TaS3 , 2004 .

[32]  S. Katayama,et al.  Photo-induced enhancement of charge density wave current in the quasi-one-dimensional conductor TaS3 , 2004 .

[33]  T. Timusk,et al.  The pseudogap in high-temperature superconductors: an experimental survey , 1999, cond-mat/9905219.

[34]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[35]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[36]  E. Michel,et al.  InSb infrared photodetectors on Si substrates grown by molecular beam epitaxy , 1996, IEEE Photonics Technology Letters.

[37]  F. Lévy,et al.  ANGLE-RESOLVED PHOTOEMISSION OF QUASI-ONE-DIMENSIONAL METALS : EVIDENCE FOR LUTTINGER LIQUID BEHAVIOR , 1995 .

[38]  P. Beauchêne,et al.  Sliding charge density waves without damping: Possible fröhlich superconductivity in blue bronze , 1987 .

[39]  F. Lévy,et al.  OPTICAL INVESTIGATION OF THE PEIERLS GAP IN THE CHAIN-LIKE CONDUCTOR (TaSe4)2I* , 1986 .

[40]  M. Izumi,et al.  Raman study of charge-density-wave phase transition in quasi-one-dimensional conductor (TaSe4)2I , 1985 .

[41]  G. Grüner,et al.  Charge density wave transport in a novel inorganic chain compound, (TaSe4)2I , 1983 .