Routing in Strongly Hyperbolic Unit Disk Graphs

Greedy routing has been studied successfully on Euclidean unit disk graphs, which we interpret as a special case of hyperbolic unit disk graphs. While sparse Euclidean unit disk graphs exhibit grid-like structure, we introduce strongly hyperbolic unit disk graphs as the natural counterpart containing graphs that have hierarchical network structures. We develop and analyze a routing scheme that utilizes these hierarchies. On arbitrary graphs this scheme guarantees a worst case stretch of max{3, 1 + 2b/a} for a > 0 and b > 1. Moreover, it stores O(k (log2 n + logk)) bits at each vertex and takes O(k) time for a routing decision, where k = πe (1 + a)/(2(b − 1)) (b2 diam(G) − 1)R + logb (diam(G)) + 1, on strongly hyperbolic unit disk graphs with threshold radius R > 0. In particular, for hyperbolic random graphs, which have previously been used to model hierarchical networks like the internet, k = O(log2 n) holds asymptotically almost surely. Thus, we obtain a worst-case stretch of 3, O(log4 n) bits of storage per vertex, and O(log2 n) time per routing decision on such networks. This beats existing worst-case lower bounds. Our proof of concept implementation indicates that the obtained results translate well to real-world networks.

[1]  Mihaela Enachescu,et al.  Reducing Maximum Stretch in Compact Routing , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[2]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[3]  Yon Dourisboure Compact Routing Schemes for Generalised Chordal Graphs , 2005, J. Graph Algorithms Appl..

[4]  Ittai Abraham,et al.  On space-stretch trade-offs: upper bounds , 2006, SPAA.

[5]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[6]  Scott Shenker,et al.  Geographic routing without location information , 2003, MobiCom '03.

[7]  Baruch Awerbuch,et al.  Routing with Polynomial Communication-Space Trade-Off , 1992, SIAM J. Discret. Math..

[8]  Huaming Zhang,et al.  Greedy routing via embedding graphs onto semi-metric spaces , 2013, Theor. Comput. Sci..

[9]  Shiri Chechik,et al.  Compact Routing Schemes , 2016, Encyclopedia of Algorithms.

[10]  Didier Colle,et al.  Fault-tolerant Greedy Forest Routing for complex networks , 2014, 2014 6th International Workshop on Reliable Networks Design and Modeling (RNDM).

[11]  Pawel Gawrychowski,et al.  Optimal Distance Labeling Schemes for Trees , 2016, PODC.

[12]  Zoltán Király A succinct tree coding for greedy navigation , 2015 .

[13]  Robert D. Kleinberg Geographic Routing Using Hyperbolic Space , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[14]  Tobias Müller,et al.  The diameter of KPKVB random graphs , 2019, Advances in Applied Probability.

[15]  Stéphane Pérennes,et al.  Memory requirement for routing in distributed networks , 1996, PODC '96.

[16]  Mingdong Tang,et al.  Tree Cover Based Geographic Routing with Guaranteed Delivery , 2010, 2010 IEEE International Conference on Communications.

[17]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Mikkel Thorup,et al.  Compact name-independent routing with minimum stretch , 2004, SPAA '04.

[19]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[20]  Baruch Awerbuch,et al.  Improved Routing Strategies with Succinct Tables , 1990, J. Algorithms.

[21]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[22]  Arthur Brady,et al.  On compact routing for the internet , 2007, CCRV.

[23]  Cédric Westphal,et al.  Scalable Routing Via Greedy Embedding , 2009, IEEE INFOCOM 2009.

[24]  Michael T. Goodrich,et al.  Succinct Greedy Geometric Routing in the Euclidean Plane , 2008, ISAAC.

[25]  I. peleg,et al.  Compact Routing Schemes with Low Stretch Factor Compact Routing Schemes with Low Stretch Factor , 1998 .

[26]  Mihai Patrascu,et al.  Distance Oracles beyond the Thorup-Zwick Bound , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[27]  Brighten Godfrey,et al.  Brief announcement: a simple stretch 2 distance oracle , 2013, PODC '13.

[28]  Ralph Keusch,et al.  Greedy Routing and the Algorithmic Small-World Phenomenon , 2016, PODC.

[29]  Brad Karp,et al.  GPSR: greedy perimeter stateless routing for wireless networks , 2000, MobiCom '00.

[30]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[31]  Mikkel Thorup,et al.  A New Infinity of Distance Oracles for Sparse Graphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[32]  Tobias Friedrich,et al.  Hyperbolic Embeddings for Near-Optimal Greedy Routing , 2018, ALENEX.

[33]  Fan Chung Graham,et al.  A Random Graph Model for Power Law Graphs , 2001, Exp. Math..

[34]  Mingdong Tang,et al.  Compact Routing on Random Power Law Graphs , 2009, 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing.

[35]  Roger Wattenhofer,et al.  Greedy Routing with Bounded Stretch , 2009, IEEE INFOCOM 2009.

[36]  Olivier Ly,et al.  Distance Labeling in Hyperbolic Graphs , 2005, ISAAC.

[37]  Brighten Godfrey,et al.  Approximate distance queries and compact routing in sparse graphs , 2011, 2011 Proceedings IEEE INFOCOM.

[38]  Xiaowei Yang,et al.  Compact routing on Internet-like graphs , 2003, IEEE INFOCOM 2004.

[39]  Liam Roditty,et al.  Close to linear space routing schemes , 2015, Distributed Computing.

[40]  Baruch Awerbuch,et al.  On buffer-economical store-and-forward deadlock prevention , 1991, IEEE INFCOM '91. The conference on Computer Communications. Tenth Annual Joint Comference of the IEEE Computer and Communications Societies Proceedings.

[41]  Cyril Gavoille,et al.  Improved Compact Routing Scheme for Chordal Graphs , 2002, DISC.

[42]  Dmitri V. Krioukov,et al.  Greedy Forwarding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric Spaces , 2008, 2010 Proceedings IEEE INFOCOM.

[43]  Christos H. Papadimitriou,et al.  On a Conjecture Related to Geometric Routing , 2004, ALGOSENSORS.

[44]  David Peleg,et al.  Compact routing schemes with low stretch factor , 2003, J. Algorithms.

[45]  Mikkel Thorup Compact oracles for reachability and approximate distances in planar digraphs , 2004, JACM.

[46]  Giuseppe Di Battista,et al.  Succinct Greedy Drawings Do Not Always Exist , 2009, Graph Drawing.

[47]  Wei Chen,et al.  A compact routing scheme and approximate distance oracle for power-law graphs , 2012, TALG.

[48]  Dimitri Papadimitriou,et al.  Geometric Routing With Word-Metric Spaces , 2014, IEEE Communications Letters.

[49]  David Eppstein,et al.  Succinct Greedy Graph Drawing in the Hyperbolic Plane , 2008, GD.

[50]  Rashid Bin Muhammad A Distributed Geometric Routing Algorithm for Ad HocWireless Networks , 2007, ITNG.

[51]  Lenore Cowen,et al.  Compact Routing on Power Law Graphs with Additive Stretch , 2006, ALENEX.

[52]  Leonard Kleinrock,et al.  Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals , 1984, IEEE Trans. Commun..

[53]  David Eppstein,et al.  Succinct Greedy Geometric Routing Using Hyperbolic Geometry , 2011, IEEE Transactions on Computers.

[54]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[55]  Baruch Awerbuch,et al.  Routing with Polynomial Communication-space Tradeoo Baruch Awerbuch , 1993 .

[56]  Feodor F. Dragan,et al.  Collective tree spanners of graphs , 2004, SIAM J. Discret. Math..

[57]  Lenore Cowen,et al.  Compact routing with minimum stretch , 1999, SODA '99.

[58]  Sándor Kisfaludi-Bak,et al.  Hyperbolic intersection graphs and (quasi)-polynomial time , 2018, SODA.

[59]  Leizhen Cai,et al.  NP-Completeness of Minimum Spanner Problems , 1994, Discret. Appl. Math..