Super edge-antimagic labeling of a cycle with a chord

An (a, d)-edge-antimagic total labeling of G is a one-to-one mapping g taking the vertices and edges onto 1, 2, . . . , |V (G)| + |E(G)| so that the edgeweights w(uv) = g(u) + g(v) + g(uv), uv ∈ E(G), form an arithmetic progression with initial term a and common difference d. Such a labeling is called super if the smallest labels appear on the vertices. In this paper, we investigate the existence of super (a, d)-edge-antimagic total labelings of graphs derived from cycles by adding one chord.

[1]  Ramón M. Figueroa-Centeno,et al.  The place of super edge-magic labelings among other classes of labelings , 2001, Discret. Math..

[2]  B. Devadas Acharya,et al.  Strongly indexable graphs , 1991, Discret. Math..

[3]  Ramón M. Figueroa-Centeno,et al.  On Super Edge-Magic Graphs , 2002, Ars Comb..

[4]  A. Kotzig,et al.  Magic Valuations of Finite Graphs , 1970, Canadian Mathematical Bulletin.

[5]  S. M. Hegde,et al.  On magic graphs , 2003, Australas. J Comb..

[6]  Walter D. Wallis,et al.  Strong edge-magic labelling of a cycle with a chord , 2003 .

[7]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[8]  Mirka Miller,et al.  Edge-magic total labelings , 2000, Australas. J Comb..