A note on cycle embedding in hypercubes with faulty vertices

Let f"v denote the number of faulty vertices in an n-dimensional hypercube. This note shows that a fault-free cycle of length of at least 2^n-2f"v can be embedded in an n-dimensional hypercube with f"v=2n-3 and n>=5. This result not only enhances the previously best known result, and also answers a question in [J.-S. Fu, Fault-tolerant cycle embedding in the hypercube, Parallel Computing 29 (2003) 821-832].

[1]  Gen-Huey Chen,et al.  Fault-Free Hamiltonian Cycles in Faulty Arrangement Graphs , 1999, IEEE Trans. Parallel Distributed Syst..

[2]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[3]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[4]  Xie-Bin Chen,et al.  Cycles passing through prescribed edges in a hypercube with some faulty edges , 2007, Inf. Process. Lett..

[5]  Sun-Yuan Hsieh,et al.  Pancyclicity of Restricted Hypercube-Like Networks under the Conditional Fault Model , 2010, SIAM J. Discret. Math..

[6]  Xie-Bin Chen,et al.  Hamiltonian paths and cycles passing through a prescribed path in hypercubes , 2009, Inf. Process. Lett..

[7]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[8]  Xu Jun-ming Edge-fault-tolerant bipanconnectivity of hypercubes , 2008 .

[9]  Shahram Latifi,et al.  Optimal ring embedding in hypercubes with faulty links , 1992, [1992] Digest of Papers. FTCS-22: The Twenty-Second International Symposium on Fault-Tolerant Computing.

[10]  Jimmy J. M. Tan,et al.  Fault-tolerant hamiltonian laceability of hypercubes , 2002, Inf. Process. Lett..

[11]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[12]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[13]  Gen-Huey Chen,et al.  Hamiltonian‐laceability of star graphs , 2000 .

[14]  John P. Hayes,et al.  Edge fault tolerance in graphs , 1993, Networks.

[15]  Jung-Sheng Fu Fault-tolerant cycle embedding in the hypercube , 2003, Parallel Comput..

[16]  Sun-Yuan Hsieh Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges , 2006, Parallel Comput..

[17]  Mee Yee Chan,et al.  On the Existence of Hamiltonian Circuits in Faulty Hypercubes , 1991, SIAM J. Discret. Math..

[18]  Abhijit Sengupta On Ring Embedding in Hypercubes with Faulty Nodes and Links , 1998, Inf. Process. Lett..

[19]  Selim G. Akl Parallel computation: models and methods , 1997 .

[20]  Xie-Bin Chen Cycles passing through a prescribed path in a hypercube with faulty edges , 2010, Inf. Process. Lett..

[21]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..

[22]  Yu-Chee Tseng Embedding a Ring in a Hypercube with Both Faulty Links and Faulty Nodes , 1996, Inf. Process. Lett..

[23]  Xie-Bin Chen,et al.  On path bipancyclicity of hypercubes , 2009, Inf. Process. Lett..

[24]  Junming Xu,et al.  Theory and Application of Graphs , 2003, Network Theory and Applications.

[25]  Junming Xu,et al.  Survey on path and cycle embedding in some networks , 2009 .

[26]  Xie-Bin Chen,et al.  Many-to-many disjoint paths in faulty hypercubes , 2009, Inf. Sci..

[27]  Xie-Bin Chen,et al.  Edge-fault-tolerant diameter and bipanconnectivity of hypercubes , 2010, Inf. Process. Lett..

[28]  Jun-Ming Xu,et al.  Edge-fault-tolerant edge-bipancyclicity of hypercubes , 2005, Inf. Process. Lett..

[29]  Sun-Yuan Hsieh,et al.  Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges , 2006, IEEE Transactions on Computers.

[30]  Chang-Hsiung Tsai Linear array and ring embeddings in conditional faulty hypercubes , 2004, Theor. Comput. Sci..