Insights into the petrogenetic evolution of the Khallari layered intrusion and coeval granites of the Paleoproterozoic Dongargarh Supergroup, Bastar Craton, India

[1]  S. Mohanty The Bastar Craton of Central India: Tectonostratigraphic evolution and implications in global correlations , 2021 .

[2]  D. Upadhyay,et al.  On the petrogenesis of Paleoarchean continental crust: U-Pb-Hf isotope and major-trace element constraints from the Bastar Craton, India , 2021 .

[3]  J. G. Shellnutt,et al.  Modeling results for the composition and typology of non-primary venusian anorthosite , 2021 .

[4]  W. Maier,et al.  The geotectonic setting, age and mineral deposit inventory of global layered intrusions , 2021 .

[5]  J. Mungall,et al.  The Rustenburg Layered Suite formed as a stack of mush with transient magma chambers , 2021, Nature Communications.

[6]  M. Ram Mohan,et al.  Petrogenesis of the Kanker Granites From the Bastar Craton: Implications for Crustal Growth and Evolution During the Archean-Proterozoic Transition , 2020, Frontiers in Earth Science.

[7]  M. Santosh,et al.  The Bastar craton, central India: A window to Archean – Paleoproterozoic crustal evolution , 2020 .

[8]  K. Hari,et al.  Platinum-Group Element Geochemistry of Boradih Ultramafic Intrusion from the Sonakhan Greenstone Belt, Bastar Craton , 2020, Goldschmidt Abstracts.

[9]  J. G. Shellnutt,et al.  Petrogenesis of the 1.85 Ga Sonakhan mafic dyke swarm, Bastar Craton, India , 2019, Lithos.

[10]  D. Barbeau,et al.  Evolution of ca. 2.5 Ga Dongargarh volcano-sedimentary Supergroup, Bastar craton, Central India: Constraints from zircon U-Pb geochronology, bulk-rock geochemistry and Hf-Nd isotope systematics , 2019, Earth-Science Reviews.

[11]  M. Santosh,et al.  Neoarchean suprasubduction zone magmatism in the Sonakhan greenstone belt, Bastar Craton, India: Implications for subduction initiation and melt extraction , 2018, Geological Journal.

[12]  Guiting Hou,et al.  An island‐arc tectonic setting for the Neoarchean Sonakhan Greenstone Belt, Bastar Craton, Central India: Insights from the chromite mineral chemistry and geochemistry of the siliceous high‐Mg basalts (SHMB) , 2018 .

[13]  K. Hari,et al.  Evidence for the Contrasting Magmatic Conditions in the Petrogenesis of A-type Granites of Phenai Mata Igneous Complex: Implications for Felsic Magmatism in the Deccan Large Igneous Province , 2018, Journal of the Indian Institute of Science.

[14]  J. G. Shellnutt,et al.  A 1.88 Ga giant radiating mafic dyke swarm across southern India and Western Australia , 2018 .

[15]  V. Balaram,et al.  Rapid Determination of REEs, PGEs, and Other Trace Elements in Geological and Environmental Materials by High Resolution Inductively Coupled Plasma Mass Spectrometry , 2018 .

[16]  M. Ram Mohan,et al.  Interaction of coeval felsic and mafic magmas from the Kanker granite, Pithora region, Bastar Craton, Central India , 2017, Journal of Earth System Science.

[17]  D. Asthana,et al.  Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India , 2017 .

[18]  R. Murdie,et al.  The Windimurra Igneous Complex: an Archean Bushveld? , 2017, Special Publications.

[19]  Xiaoli Shi,et al.  The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) , 2017 .

[20]  A. Saha,et al.  Zircon U-Pb geochronology, Lu-Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: Implications for Neoarchean–Paleoproterozoic crustal growth , 2016 .

[21]  U. Schaltegger,et al.  The Bushveld Complex was emplaced and cooled in less than one million years – results of zirconology, and geotectonic implications , 2015 .

[22]  S. Mohanty Chapter 11 Palaeoproterozoic supracrustals of the Bastar Craton: Dongargarh Supergroup and Sausar Group , 2015 .

[23]  T. Plank,et al.  Dy/Dy*: Variations Arising from Mantle Sources and Petrogenetic Processes , 2013 .

[24]  M. Panigrahi,et al.  Comparative petrogenesis and tectonics of Paleoproterozoic Malanjkhand and Dongargarh granitoids, Central India , 2012 .

[25]  C. Harris,et al.  O-isotope Study of the Bushveld Complex Granites and Granophyres: Constraints on Source Composition, and Assimilation , 2011 .

[26]  J. Liégeois,et al.  Differentiation of Tholeiitic Basalt to A-Type Granite in the Sept Iles Layered Intrusion, Canada , 2011 .

[27]  B. Frost,et al.  On Ferroan (A-type) Granitoids: their Compositional Variability and Modes of Origin , 2011 .

[28]  L. Ashwal THE TEMPORALITY OF ANORTHOSITES , 2010 .

[29]  B. Jahn,et al.  Formation of the Late Permian Panzhihua plutonic-hypabyssal-volcanic igneous complex: Implications for the genesis of Fe-Ti oxide deposits and A-type granites of SW China , 2010 .

[30]  Shan Gao,et al.  Continental and Oceanic Crust Recycling-induced Melt^Peridotite Interactions in the Trans-North China Orogen: U^Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths , 2010 .

[31]  R. Cawthorn.,et al.  Origin of Anorthosite and Magnetitite Layers in the Bushveld Complex, Constrained by Major Element Compositions of Plagioclase , 2009 .

[32]  S. Mondal Chromite and PGE deposits of mesoarchaean ultramafic-mafic suites within the greenstone belts of the Singhbhum craton, India: Implications for mantle heterogeneity and tectonic setting , 2009 .

[33]  H. M. Rajesh,et al.  Evidence for an early Archaean granite from Bastar craton, India , 2009, Journal of the Geological Society.

[34]  R. Srivastava,et al.  A new find of boninite dyke from the Palaeoproterozoic Dongargarh Super group: inference for a fossil subduction zone in the Archaean of the Bastar craton, Central India , 2009 .

[35]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[36]  Mei-Fu Zhou,et al.  Abundant Fe–Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: evidence for early saturation of Fe–Ti oxides in ferrobasaltic magma , 2008 .

[37]  B. Bonin A-type granites and related rocks: Evolution of a concept, problems and prospects , 2007 .

[38]  K. Mezger,et al.  Nb/Ta and Zr/Hf in ocean island basalts — Implications for crust–mantle differentiation and the fate of Niobium , 2007 .

[39]  S. Sensarma A bimodal large igneous province and the plume debate: The Paleoproterozoic Dongargarh Group, central India , 2007 .

[40]  H. Stein,et al.  A 2.5 Ga porphyry Cu–Mo–Au deposit at Malanjkhand, central India: implications for Late Archean continental assembly , 2004 .

[41]  M. Panigrahi,et al.  Age of granitic activity associated with copper–molybdenum mineralization at Malanjkhand, Central India , 2004 .

[42]  J. Ghosh,et al.  3.56 Ga tonalite in the central part of the Bastar Craton, India: oldest Indian date , 2004 .

[43]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[44]  H. Palme,et al.  Crust–mantle interaction in the genesis of siliceous high magnesian basalts: evidence from the Early Proterozoic Dongargarh Supergroup, India , 2002 .

[45]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[46]  N. Arndt,et al.  Progressive crustal contamination of the Bushveld Complex: evidence from Nd isotopic analyses of the cumulate rocks , 2000 .

[47]  V. Rao,et al.  Geochemistry and Origin of Early Proterozoic Dongargarh Rapakivi Granite Complex, Central India - An Example for Magma Mixing and Differentiation , 2000 .

[48]  A. Mitchell,et al.  Magma replenishment, and the significance of poikilitic textures, in the Lower Main Zone of the western Bushveld Complex, South Africa , 1998, Mineralogical Magazine.

[49]  H. Miura,et al.  Geochemistry of the Dongargarh volcanic rocks, Central India: implications for the Precambrian mantle , 1996 .

[50]  W. McDonough,et al.  The composition of the Earth , 1995 .

[51]  C. Lesher Kinetics of Sr and Nd exchange in silicate liquids : Theory and experiments, and applications to uphill diffusion, isotopic equilibration and irreversible mixing of magmas , 1994 .

[52]  F. Corfu,et al.  Early Archean crust in Bastar Craton, Central India—a geochemical and isotopic study , 1993 .

[53]  G. Eby Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications , 1992 .

[54]  W. E. Stephens,et al.  Chemical and isotopic evidence for major mass transfer between mafic enclaves and felsic magma , 1991 .

[55]  G. Eby The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis , 1990 .

[56]  I. Nicholls,et al.  Chemical modification of enclave magma by post-emplacement crystal fractionation, diffusion and metasomatism , 1990 .

[57]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[58]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[59]  M. R. Sharpe,et al.  The Bushveld Complex; introduction and review , 1985 .

[60]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[61]  R. Wiebe,et al.  Fractional crystallization and magma mixing in the Tigalak layered intrusion, the Nain anorthosite complex, Labrador , 1983 .

[62]  R. Pankhurst,et al.  The interpretation of igneous rocks , 1979 .