Eagle strategy with flower algorithm

For any metaheuristic algorithm, it is important to balance exploration and exploitation because the interaction of these two key components can significantly affect the efficiency. However, how to achieve a fine balance is still an open problem. We attempt to explore this challenging issue by using eagle strategy in combination with the recently developed flower algorithm. Our results on test benchmarks suggest that more effort should focus on explorative search for multimodal problems.

[1]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[2]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[3]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[4]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[5]  M. Moreau,et al.  Intermittent search strategies , 2011, 1104.0639.

[6]  O. Bhabha The Essential Turing , 2011 .

[7]  Xin-She Yang,et al.  Multiobjective cuckoo search for design optimization , 2013, Comput. Oper. Res..

[8]  O Bénichou,et al.  Two-dimensional intermittent search processes: An alternative to Lévy flight strategies. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Xin-She Yang,et al.  Computational Optimization and Applications in Engineering and Industry , 2013, Computational Optimization and Applications in Engineering and Industry.

[10]  Rafael S. Parpinelli,et al.  New inspirations in swarm intelligence: a survey , 2011, Int. J. Bio Inspired Comput..

[11]  Carlos A. Coello Coello,et al.  Solving Engineering Optimization Problems with the Simple Constrained Particle Swarm Optimizer , 2008, Informatica.

[12]  Joshua D. Knowles,et al.  Some multiobjective optimizers are better than others , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[13]  Xin-She Yang,et al.  Engineering Optimization: An Introduction with Metaheuristic Applications , 2010 .

[14]  Xin-She Yang,et al.  Review of Metaheuristics and Generalized Evolutionary Walk Algorithm , 2011, 1105.3668.

[15]  Xin-She Yang,et al.  Chaos-enhanced accelerated particle swarm optimization , 2013, Commun. Nonlinear Sci. Numer. Simul..

[16]  Xin-She Yang,et al.  Multi-Objective Flower Algorithm for Optimization , 2014, ICCS.

[17]  Xin-She Yang,et al.  Flower Pollination Algorithm for Global Optimization , 2012, UCNC.

[18]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[19]  Xin-She Yang,et al.  Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization , 2010, NICSO.

[20]  Christian Callegari,et al.  Advances in Computing, Communications and Informatics (ICACCI) , 2015 .

[21]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[22]  Xin-She Yang,et al.  Two-stage eagle strategy with differential evolution , 2012, Int. J. Bio Inspired Comput..

[23]  Natalio Krasnogor,et al.  Nature‐inspired cooperative strategies for optimization , 2009, Int. J. Intell. Syst..

[24]  Amir Hossein Gandomi,et al.  Coupled eagle strategy and differential evolution for unconstrained and constrained global optimization , 2012, Comput. Math. Appl..

[25]  Xin-She Yang,et al.  Multiobjective firefly algorithm for continuous optimization , 2012, Engineering with Computers.

[26]  Xin-She Yang,et al.  Bat algorithm: a novel approach for global engineering optimization , 2012, 1211.6663.