Integral points in rational polygons: a numerical semigroup approach

[1]  Shaofang Hong,et al.  Analysis of sharp polynomial upper estimate of number of positive integral points in a five-dimensional tetrahedra , 2008, Discret. Math..

[2]  Jorge L. Ramírez Alfonsín,et al.  Gaps in semigroups , 2008, Discret. Math..

[3]  S. Robins,et al.  Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra , 2007 .

[4]  S. Yau,et al.  Counting the Number of Integral Points in General $n$ -Dimensional Tetrahedra and Bernoulli Polynomials , 2003, Canadian Mathematical Bulletin.

[5]  S. Robins,et al.  Explicit and Efficient Formulas for the Lattice Point Count in Rational Polygons Using Dedekind—Rademacher Sums , 2001, Discret. Comput. Geom..

[6]  Alexander I. Barvinok,et al.  A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[7]  William J. Cook,et al.  On integer points in polyhedra , 1992, Comb..

[8]  David G. Kirkpatrick,et al.  Polygon triangulation in O(n log log n) time with simple data-structures , 1990, SCG '90.

[9]  Roland Häggkvist,et al.  On numerical semigroups , 1986 .

[10]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[11]  S. Yau,et al.  On the GLY Conjecture of upper estimate of positive integral points in real right-angled simplices☆ , 2007 .

[12]  Stephen S.-T. Yau,et al.  An upper estimate of integral points in real simplices with an application to singularity theory , 2006 .

[13]  Y. O. Hamidoune,et al.  The Diophantine Frobenius Problem , 2006 .

[14]  Wun-Seng Chou,et al.  On the partition function of a finite set , 2003, Australas. J Comb..

[15]  S. Yau,et al.  A sharp estimate of the number of integral points in a 4-dimensional tetrahedra. , 1995 .

[16]  S. Yau,et al.  DURFEE CONJECTURE AND COORDINATE FREE CHARACTERIZATION OF HOMOGENEOUS SINGULARITIES , 1993 .

[17]  James Pommersheim,et al.  Toric varieties, lattice points and Dedekind sums , 1993 .

[18]  S. Yau,et al.  A sharp estimate of the number of integral points in a tetrahedron. , 1992 .

[19]  J. Reeve On the Volume of Lattice Polyhedra , 1957 .

[20]  L. J. Mordell,et al.  Lattice Points in a Tetrahedron and Generalized Dedekind Sums , 1951 .

[21]  J. Littlewood,et al.  Some Problems of Diophantine Approximation: The Lattice-Points of a Right-Angled Triangle , 1922 .