New single-source precursor for bismuth sulfide and its use as low-cost counter electrode material for dye-sensitized solar cells

[1]  Zhihao Yuan,et al.  Mesoporous Bi₂S₃ nanorods with graphene-assistance as low-cost counter-electrode materials in dye-sensitized solar cells. , 2014, Nanoscale.

[2]  Xueqin Zuo,et al.  Facile synthesis of Bi2S3–C composite microspheres as low-cost counter electrodes for dye-sensitized solar cells , 2014 .

[3]  Abhinav Kumar,et al.  Light harvesting properties of ferrocenyl based sensitizer with sulfur rich dithiocarabamates and xanthate as anchoring group , 2014 .

[4]  C. Cannas,et al.  Colloidal Bi2S3 Nanocrystals: Quantum Size Effects and Midgap States , 2014 .

[5]  Jingbo Li,et al.  Synthesis of Bi2S3–Bi2O3 composites and their enhanced photosensitive properties , 2014 .

[6]  F. Hofer,et al.  Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursor , 2013 .

[7]  Abhinav Kumar,et al.  Synthesis, characterization and light harvesting properties of nickel(II) diimine dithiolate complexes. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  B. Kale,et al.  Controlled synthesis of aligned Bi2S3 nanowires, sharp apex nanowires and nanobelts with its morphology dependent field emission investigations , 2013 .

[9]  Zhen Zhou,et al.  Facet-dependent activity of bismuth sulfide as low-cost counter-electrode materials for dye-sensitized solar cells , 2012 .

[10]  W. Su,et al.  Synthesis, optical and photovoltaic properties of bismuth sulfide nanorods , 2012 .

[11]  Abhinav Kumar,et al.  Application of π-extended ferrocene with varied anchoring groups as photosensitizers in TiO2-based dye-sensitized solar cells (DSSCs). , 2011, Chemistry, an Asian journal.

[12]  Xueping Gao,et al.  Carbon nanotubes with titanium nitride as a low-cost counter-electrode material for dye-sensitized solar cells. , 2010, Angewandte Chemie.

[13]  Abhinav Kumar,et al.  Synthesis, structure and light-harvesting properties of some new transition-metal dithiocarbamates involving ferrocene. , 2010, Chemistry.

[14]  Chulwoo Kim,et al.  High molar extinction coefficient organic sensitizers for efficient dye-sensitized solar cells. , 2010, Chemistry.

[15]  Yanhong Luo,et al.  Towards Optimization of Materials for Dye‐Sensitized Solar Cells , 2009 .

[16]  Xueping Gao,et al.  Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells. , 2009, Chemical communications.

[17]  Shozo Yanagida,et al.  Iodine/iodide-free dye-sensitized solar cells. , 2009, Accounts of chemical research.

[18]  M. Grätzel,et al.  CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[19]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[20]  M. Grätzel,et al.  An efficient dye-sensitized solar cell with an organic sensitizer encapsulated in a cyclodextrin cavity. , 2009, Angewandte Chemie.

[21]  Qiquan Qiao,et al.  Dye-sensitized solar cells based on low cost nanoscale carbon/TiO2 composite counter electrode , 2009 .

[22]  Pingjian Li,et al.  An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. , 2008, Journal of the American Chemical Society.

[23]  Takurou N. Murakami,et al.  Counter electrodes for DSC: Application of functional materials as catalysts , 2008 .

[24]  Guido Viscardi,et al.  Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. , 2005, Journal of the American Chemical Society.

[25]  Qing Wang,et al.  Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[26]  E. Tiekink,et al.  Growth of bismuth sulfide nanowire using bismuth trisxanthate single source precursors , 2003 .

[27]  K. Wheeler,et al.  Competitive N–H⋯OC and N–H⋯SC hydrogen bonding in alanine dithiocarbamates , 2003 .

[28]  Andreas Georg,et al.  Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells , 2001 .

[29]  T. Trindade,et al.  Use of Dialkyldithiocarbamato Complexes of Bismuth(III) for the Preparation of Nano- and Microsized Bi2S3 Particles and the X-ray Crystal Structures of [Bi{S2CN(CH3)(C6H13)}3] and [Bi{S2CN(CH3)(C6H13)}3(C12H8N2)] , 2001 .

[30]  T. Trindade,et al.  The use of bismuth(III) dithiocarbamato complexes as precursors for the low-pressure MOCVD of Bi2S3 , 2000 .

[31]  T. Trindade,et al.  Preparation of Bi2S3 nanofibers using a single-source method , 2000 .

[32]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[33]  Dean G. Grier,et al.  Tris(benzylthiolato)bismuth. Efficient Precursor to Phase-Pure Polycrystalline Bi(2)S(3). , 1998, Inorganic chemistry.

[34]  A. Vodacek,et al.  Excited state properties of Quinoxaline-substituted Platinum 1,2-Enedithiolates , 1997 .

[35]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[36]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[37]  C. R. Martin,et al.  Electrochemical Fabrication of Cadmium Chalcogenide Microdiode Arrays , 1993 .

[38]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[39]  C. Tsipis,et al.  Electronic ground states, chemical reactivity, and related properties of square-planar platinum(II) dithio complexes , 1987 .

[40]  K. Kalyanasundaram Photochemical and Photoelectrochemical Approaches to Energy Conversion , 2010 .

[41]  G. Meyer,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[42]  Michael Grätzel,et al.  Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells. , 2008, Angewandte Chemie.

[43]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[44]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[45]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.