Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications

Abstract A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications.

[1]  Zhifeng Yang,et al.  Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation , 2012 .

[2]  Xinhua Xu,et al.  Dechlorination of 2,4-dichlorophenoxyacetic acid by sodium carboxymethyl cellulose-stabilized Pd/Fe nanoparticles. , 2011, Journal of hazardous materials.

[3]  Ying Yu,et al.  Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil , 2011, Biotechnology Letters.

[4]  Sung-Jin Yoon,et al.  A novel dienelactone hydrolase from the thermoacidophilic archaeon Sulfolobus solfataricus P1: purification, characterization, and expression. , 2010, Biochimica et biophysica acta.

[5]  J. Garland,et al.  Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide-degrading bacteria and microbial community function in an agricultural soil , 2010 .

[6]  N. Clipson,et al.  Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol. , 2010, FEMS microbiology ecology.

[7]  W. Holben,et al.  Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders. , 2010, Systematic and applied microbiology.

[8]  D. Pieper,et al.  Novel metal-binding site of Pseudomonas reinekei MT1 trans-dienelactone hydrolase. , 2009, Biochemical and biophysical research communications.

[9]  N. Trefault,et al.  Involvement of several transcriptional regulators in the differential expression of tfd genes in Cupriavidus necator JMP134. , 2009, International microbiology : the official journal of the Spanish Society for Microbiology.

[10]  H. Hecht,et al.  trans-Dienelactone hydrolase from Pseudomonas reinekei MT1, a novel zinc-dependent hydrolase. , 2008, Biochemical and biophysical research communications.

[11]  D. Pieper,et al.  Metabolic Reconstruction Ofaromatic Compounds Degradation from the Genome of the Amazing Pollutant-degrading Bacterium Cupriavidus Necator Jmp134 , 2007 .

[12]  D. Janssen,et al.  Elucidation of the 4-Hydroxyacetophenone Catabolic Pathway in Pseudomonas fluorescens ACB , 2008, Journal of bacteriology.

[13]  E. Carrilho,et al.  Degradation of 2,4-D herbicide by microorganisms isolated from Brazilian contaminated soil , 2007 .

[14]  G. Zylstra,et al.  Cloning of a Gene Cluster Involved in the Catabolism of p-Nitrophenol by Arthrobacter sp. Strain JS443 and Characterization of the p-Nitrophenol Monooxygenase , 2007, Journal of bacteriology.

[15]  K. Itoh,et al.  Chlorophenol Hydroxylase Activity Encoded by TfdB from 2,4-Dichlorophenoxyacetic Acid (2,4-D)-Degrading Bradyrhizobium sp. Strain RD5-C2 , 2007, Bioscience, biotechnology, and biochemistry.

[16]  Okoh Anthony,et al.  Studies on aerobic biodegradation activities of 2,4- dichlorophenoxyacetic acid by bacteria species isolated from petroleum polluted site , 2007 .

[17]  Okoh Anthony,et al.  Aerobic dehalogenation activities of two petroleum degrading bacteria , 2007 .

[18]  B. González,et al.  Genetic Characterization of 2,4,6-Trichlorophenol Degradation in Cupriavidus necator JMP134 , 2007, Applied and Environmental Microbiology.

[19]  N. Esaki,et al.  Biochemical and Genetic Analysis of the γ-Resorcylate (2,6-Dihydroxybenzoate) Catabolic Pathway in Rhizobium sp. Strain MTP-10005: Identification and Functional Analysis of Its Gene Cluster , 2006, Journal of bacteriology.

[20]  F. Chinalia,et al.  2,4-D Toxicity: Cause, Effect and Control , 2007 .

[21]  Cheng-Ying Jiang,et al.  Genetic Characterization of the Resorcinol Catabolic Pathway in Corynebacterium glutamicum , 2006, Applied and Environmental Microbiology.

[22]  D. Pieper,et al.  Chlorophenol Hydroxylases Encoded by Plasmid pJP4 Differentially Contribute to Chlorophenoxyacetic Acid Degradation , 2006, Applied and Environmental Microbiology.

[23]  R. Steiman,et al.  Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP). , 2005, Chemosphere.

[24]  D. Ollis,et al.  Following directed evolution with crystallography: structural changes observed in changing the substrate specificity of dienelactone hydrolase. , 2005, Acta crystallographica. Section D, Biological crystallography.

[25]  M. Fukuda,et al.  Identification and Characterization of Genes Involved in the Downstream Degradation Pathway of γ-Hexachlorocyclohexane in Sphingomonas paucimobilis UT26 , 2005, Journal of bacteriology.

[26]  F. Schmidt,et al.  Survival ofAlcaligenes xylosoxidans degrading 2,2-dichloropropionate and horizontal transfer of its halidohydrolase gene in a soil microcosm , 1991, Current Microbiology.

[27]  L. Audus The biological detoxication of hormone herbicides in soil , 1951, Plant and Soil.

[28]  L. Audus The biological detoxication of 2: 4-dichlorophenoxyacetic acid in soil , 1949, Plant and Soil.

[29]  A. Singh,et al.  Biodegradation and Bioremediation , 2020, Soil Biology.

[30]  M. Mau,et al.  Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44 , 2005, Archives of Microbiology.

[31]  V. V. Korobov,et al.  Identification and Characterization of a Plasmid in Strain Aeronomas hydrophila IBRB-36 4CPA Carrying Genes for Catabolism of Chlorophenoxyacetic Acids , 2004, Russian Journal of Genetics.

[32]  E. Vedler,et al.  The Completely Sequenced Plasmid pEST4011 Contains a Novel IncP1 Backbone and a Catabolic Transposon Harboring tfd Genes for 2,4-Dichlorophenoxyacetic Acid Degradation , 2004, Journal of bacteriology.

[33]  N. Trefault,et al.  Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. , 2004, Environmental microbiology.

[34]  A. Bortolozzi,et al.  Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. , 2004, Neurotoxicology and teratology.

[35]  M. Schlömann,et al.  Characterization of a gene cluster encoding the maleylacetate reductase from Ralstonia eutropha 335T, an enzyme recruited for growth with 4-fluorobenzoate. , 2004, Microbiology.

[36]  Y. Kasahara,et al.  Advances in soil microbial ecology and the biodiversity , 1997, Antonie van Leeuwenhoek.

[37]  J. D. Elsas,et al.  Methods for the introduction of bacteria into soil: A review , 1990, Biology and Fertility of Soils.

[38]  T. Ryan,et al.  Biodegradation of 2,4,5-trichlorophenoxyacetic acid in liquid culture and in soil by the white rot fungus Phanerochaete chrysosporium , 1989, Applied Microbiology and Biotechnology.

[39]  G. Ditzelmüller,et al.  Isolation and characterization of a 2,4-dichlorophenoxyacetic acid-degrading soil bacterium , 1989, Applied Microbiology and Biotechnology.

[40]  K. Engesser,et al.  Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134 , 1988, Archives of Microbiology.

[41]  B. Friedrich,et al.  Transfer and expression of the herbicide-degrading plasmid pJP4 in aerobic autotrophic bacteria , 1983, Archives of Microbiology.

[42]  M. Schlömann,et al.  Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134 , 2004, Archives of Microbiology.

[43]  L. Forney,et al.  Enhancement of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil by dissemination of catabolic plasmids , 2004, Antonie van Leeuwenhoek.

[44]  P. Trudgill,et al.  Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus , 2004, Archives of Microbiology.

[45]  W. Reineke,et al.  Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds , 2004, Archives of Microbiology.

[46]  C. Werlen,et al.  Mutation analysis of the different tfd genes for degradation of chloroaromatic compounds in Ralstonia eutropha JMP134 , 2004, Archives of Microbiology.

[47]  D. Pieper,et al.  New Bacterial Pathway for 4- and 5-Chlorosalicylate Degradation via 4-Chlorocatechol and Maleylacetate in Pseudomonas sp. Strain MT1 , 2003, Journal of bacteriology.

[48]  D. Pieper,et al.  Efficient Turnover of Chlorocatechols Is Essential for Growth of Ralstonia eutropha JMP134(pJP4) in 3-Chlorobenzoic Acid , 2003, Journal of bacteriology.

[49]  B. A. Khalil Isolation and Characterization of 2,4-Dichlorophenoxyacetic Acid Degrading Organisms from Soil in Jordan Valley , 2003 .

[50]  H. Kamin,et al.  Studies of a Flavoprotein, Salicylate Hydroxylase , 2003 .

[51]  O. V. Moiseeva,et al.  A New Modified ortho Cleavage Pathway of 3-Chlorocatechol Degradation by Rhodococcus opacus 1CP: Genetic and Biochemical Evidence , 2002, Journal of bacteriology.

[52]  D. Pieper,et al.  Importance of Different tfd Genes for Degradation of Chloroaromatics by Ralstonia eutropha JMP134 , 2002, Journal of bacteriology.

[53]  R. Hausinger,et al.  Probing the 2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenase substrate-binding site by site-directed mutagenesis and mechanism-based inactivation. , 2002, Biochemistry.

[54]  R. Hausinger,et al.  tfdA-Like Genes in 2,4-Dichlorophenoxyacetic Acid-Degrading Bacteria Belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia Cluster in α-Proteobacteria , 2002, Applied and Environmental Microbiology.

[55]  J. Elkins,et al.  X-ray crystal structure of Escherichia coli taurine/alpha-ketoglutarate dioxygenase complexed to ferrous iron and substrates. , 2002, Biochemistry.

[56]  J. R. van der Meer,et al.  TfdDII, one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro-cis,cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate , 2002, Archives of Microbiology.

[57]  S. Takami,et al.  Novel 2,4-Dichlorophenoxyacetic Acid Degradation Genes from Oligotrophic Bradyrhizobium sp. Strain HW13 Isolated from a Pristine Environment , 2002, Journal of bacteriology.

[58]  S. Kleinsteuber,et al.  Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43 , 2001, Extremophiles.

[59]  R. Hausinger,et al.  Alternative substrates of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase , 2001 .

[60]  B. Blakley,et al.  The effect of exposure to a commercial 2,4-D formulation during gestation on the immune response in CD-1 mice. , 2001, Toxicology.

[61]  B. van Ravenzwaay,et al.  Developmental toxicity studies in rats and rabbits on 2,4-dichlorophenoxyacetic acid and its forms. , 2001, Toxicological sciences : an official journal of the Society of Toxicology.

[62]  A. Smith,et al.  2,4-dichlorophenoxyacetate/alpha-ketoglutarate dioxygenases from Burkholderia cepacia 2a and Ralstonia eutropha JMP134. , 2001, Microbios.

[63]  D. Ollis,et al.  Structure of the C123S mutant of dienelactone hydrolase (DLH) bound with the PMS moiety of the protease inhibitor phenylmethylsulfonyl fluoride (PMSF). , 2000, Acta crystallographica. Section D, Biological crystallography.

[64]  E. Vedler,et al.  Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. , 2000, Gene.

[65]  K. Min,et al.  Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. , 2000, Molecules and cells.

[66]  J. Leveau,et al.  Characterization of a Second tfd Gene Cluster for Chlorophenol and Chlorocatechol Metabolism on Plasmid pJP4 in Ralstonia eutropha JMP134(pJP4) , 2000, Journal of bacteriology.

[67]  P. de Vos,et al.  Effect of Dissemination of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Degradation Plasmids on 2,4-D Degradation and on Bacterial Community Structure in Two Different Soil Horizons , 2000, Applied and Environmental Microbiology.

[68]  B. González,et al.  Degradation of 2,4,6‐trichlorophenol via chlorohydroxyquinol in Ralstonia eutropha JMP134 and JMP222 , 2000, Journal of basic microbiology.

[69]  Y. Kamagata,et al.  Presence of 2,4-D-catabolizing Bacteria in a Japanese Arable Soil that Belong to BANA (Bradyrhizobium-Agromonas-Nitrobacter-Afipia) Cluster in .ALPHA.-Proteobacteria. , 2000 .

[70]  D. Pieper,et al.  Role oftfdCIDIEIFIandtfdDIICIIEIIFIIGene Modules in Catabolism of 3-Chlorobenzoate by Ralstonia eutropha JMP134(pJP4) , 2000, Applied and Environmental Microbiology.

[71]  D. Newby,et al.  Detection and Characterization of Plasmid pJP4 Transfer to Indigenous Soil Bacteria , 2000, Applied and Environmental Microbiology.

[72]  H. Naveau,et al.  Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies. , 1999 .

[73]  J. Leveau,et al.  Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134 (pJP4) to the herbicide 2,4‐dichlorophenoxyacetate , 1999, Molecular microbiology.

[74]  A. Pühler,et al.  Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies , 1999, Biology and Fertility of Soils.

[75]  K. Timmis,et al.  A Functional 4-Hydroxysalicylate/Hydroxyquinol Degradative Pathway Gene Cluster Is Linked to the Initial Dibenzo-p-Dioxin Pathway Genes inSphingomonas sp. Strain RW1 , 1999, Journal of bacteriology.

[76]  M. Häggblom,et al.  Earthworm Egg Capsules as Vectors for the Environmental Introduction of Biodegradative Bacteria , 1999, Applied and Environmental Microbiology.

[77]  L. Golovleva,et al.  Purification and characterization of maleylacetate reductase from Nocardioides simplex 3E utilizing phenoxyalcanoic herbicides 2,4-D and 2,4,5-T. , 1999, Biochemistry. Biokhimiia.

[78]  G. Soulas,et al.  Diversity of tfdC genes : distribution and polymorphism among 2,4-dichlorophenoxyacetic acid degrading soil bacteria , 1999 .

[79]  W. Verstraete,et al.  Methane oxidation as a method to evaluate the removal of 2,4-dichlorophenoxyactic acid (2,4-D) from soil by plasmid-mediated bioaugmentation , 1999 .

[80]  L. Golovleva,et al.  Characterization of the Maleylacetate Reductase MacA of Rhodococcus opacus 1CP and Evidence for the Presence of an Isofunctional Enzyme , 1998, Journal of bacteriology.

[81]  E. Top,et al.  Gene transfer in soil systems using microcosms , 1998 .

[82]  K. Minamisawa,et al.  Slow-growing and oligotrophic soil bacteria phylogenetically close to Bradyrhizobium japonicum , 1998 .

[83]  R. Hausinger,et al.  Ascorbic acid-dependent turnover and reactivation of 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase using thiophenoxyacetic acid. , 1998, Biochemistry.

[84]  K. Timmis,et al.  Detoxification of Protoanemonin by Dienelactone Hydrolase , 1998, Journal of bacteriology.

[85]  B. Yano,et al.  Single-dose and chronic dietary neurotoxicity screening studies on 2,4-dichlorophenoxyacetic acid in rats. , 1997, Fundamental and applied toxicology : official journal of the Society of Toxicology.

[86]  M. A. Cheney,et al.  Herbicide and estrogen effects on the metabolic activity of Elliptio complanata measured by calorespirometry. , 1997, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[87]  R. Duffard,et al.  Effects of 2,4-dichlorophenoxyacetic acid on central nervous system of developmental rats. Associated changes in ganglioside pattern , 1997, Brain Research.

[88]  C. Nakatsu,et al.  Distribution of the tfdA Gene in Soil Bacteria That Do Not Degrade 2,4-Dichlorophenoxyacetic Acid (2,4-D) , 1997, Microbial Ecology.

[89]  J. V. van Elsas,et al.  Fate and activity of microorganisms introduced into soil , 1997, Microbiology and molecular biology reviews : MMBR.

[90]  L. Forney,et al.  Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria , 1997, Applied and environmental microbiology.

[91]  K. Smalla,et al.  Manure Enhances Plasmid Mobilization and Survival of Pseudomonas putida Introduced into Field Soil , 1997, Applied and environmental microbiology.

[92]  A. Harker,et al.  Identification of the Inducing Agent of the 2,4-Dichlorophenoxyacetic Acid Pathway Encoded by Plasmid pJP4 , 1997, Applied and environmental microbiology.

[93]  Meer,et al.  The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4) , 1996, Journal of bacteriology.

[94]  A. Chakrabarty,et al.  Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100 , 1996, Applied and environmental microbiology.

[95]  A. Bortolozzi,et al.  Central nervous system myelin deficit in rats exposed to 2,4-dichlorophenoxyacetic acid throughout lactation. , 1996, Neurotoxicology and teratology.

[96]  C. Dunnick,et al.  Mechanism mediating basolateral transport of 2,4-dichlorophenoxyacetic acid in rat kidney. , 1996, The Journal of pharmacology and experimental therapeutics.

[97]  I. Pepper,et al.  Gene transfer of Alcaligenes eutrophus JMP134 plasmid pJP4 to indigenous soil recipients , 1996, Applied and environmental microbiology.

[98]  R. Hausinger,et al.  Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase from Burkholderia sp. strain RASC , 1996, Applied and environmental microbiology.

[99]  T. Vallaeys,et al.  The metabolic pathway of 2,4‐dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR‐RFLP analysis , 1996 .

[100]  D. Crowley,et al.  Rhizosphere effects on biodegradation of 2,5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens , 1996 .

[101]  A. Heinaru,et al.  Sequence analysis of the 2,4-dichlorophenol hydroxylase gene tfdB and 3,5-dichlorocatechol 1,2-dioxygenase gene tfdC of 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011. , 1996, Gene.

[102]  J. Palermo-neto,et al.  Toxicology of 2,4-dichlorophenoxyacetic acid (2,4-D) and its determination in serum and brain tissue using gas chromatography-electron-capture detection. , 1995, Journal of analytical toxicology.

[103]  R. Korus,et al.  2,4-Dichlorophenoxyacetic Acid Detection Using 2,4-Dichlorophenoxyacetic Acid .alpha.-Ketoglutarate Dioxygenase. , 1995, Environmental science & technology.

[104]  R. Hausinger,et al.  Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism. , 1995, Environmental health perspectives.

[105]  D. Ghosal,et al.  Genetic and molecular analysis of a regulatory region of the herbicide 2,4‐dichlorophenoxyacetate catabolic plasmid pJP4 , 1995, Molecular microbiology.

[106]  D. Focht,et al.  A meta cleavage pathway for 4-chlorobenzoate, an intermediate in the metabolism of 4-chlorobiphenyl by Pseudomonas cepacia P166 , 1995, Applied and environmental microbiology.

[107]  W. Reineke,et al.  Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination , 1995, Journal of bacteriology.

[108]  A. Bortolozzi,et al.  Altered behavioral responses in 2,4-dichlorophenoxyacetic acid treated and amphetamine challenged rats. , 1995, Neurotoxicology.

[109]  W. Verstraete,et al.  Transfer of the catabolic plasmid RP4::Tn4371 to indigenous soil bacteria and its effect on respiration and biphenyl breakdown , 1994 .

[110]  H. Harmsen,et al.  Molecular ecology of microbes: a review of promises, pitfalls and true progress. , 1994 .

[111]  J. Vandermeer Genetic adaptation of bacteria to chlorinated aromatic compounds , 1994 .

[112]  A. Harker,et al.  Analysis of duplicated gene sequences associated with tfdR and tfdS in Alcaligenes eutrophus JMP134 , 1994, Journal of bacteriology.

[113]  K. Horiike,et al.  Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90 , 1994, Applied and environmental microbiology.

[114]  I. Solyanikova,et al.  Dienelactone hydrolase from , 1994 .

[115]  J. R. van der Meer Genetic adaptation of bacteria to chlorinated aromatic compounds. , 1994, FEMS microbiology reviews.

[116]  N. Ausmees,et al.  Characterization of a new 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011: physical map and localization of catabolic genes , 1993 .

[117]  R. Hausinger,et al.  Purification and characterization of 2,4-dichlorophenoxyacetate/α-ketoglutarate dioxygenase , 1993 .

[118]  M. Schlömann,et al.  Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4) , 1993, Journal of bacteriology.

[119]  D. Ollis,et al.  Substrate-induced activation of dienelactone hydrolase: an enzyme with a naturally occurring Cys-His-Asp triad. , 1993, Protein engineering.

[120]  G. Ashley,et al.  Catalysis by dienelactone hydrolase: A variation on the protease mechanism , 1993, Proteins.

[121]  M. Schlömann,et al.  Dienelactone hydrolase from Pseudomonas cepacia , 1993, Journal of bacteriology.

[122]  R. Hausinger,et al.  Alcaligenes eutrophus JMP134 "2,4-dichlorophenoxyacetate monooxygenase" is an alpha-ketoglutarate-dependent dioxygenase , 1993, Journal of bacteriology.

[123]  Stefano Servi,et al.  The Enzymatic Preparation of (2R,3S)-Phenyl Glycidic Acid Esters. , 1993 .

[124]  K. Horiike,et al.  Purification of 3,5-dichlorocatechol 1,2-dioxygenase, a nonheme iron dioxygenase and a key enzyme in the biodegradation of a herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), from Pseudomonas cepacia CSV90. , 1993, Archives of biochemistry and biophysics.

[125]  S. Henikoff,et al.  Nucleotide sequence and initial functional characterization of the clcR gene encoding a LysR family activator of the clcABD chlorocatechol operon in Pseudomonas putida , 1993, Journal of bacteriology.

[126]  Vos,et al.  Molecular mechanisms of genetic adaptation to xenobiotic compounds , 1992, Microbiological reviews.

[127]  A. Chakrabarty,et al.  Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida , 1992, Journal of bacteriology.

[128]  S. Servi,et al.  The enzymic preparation of (2R,3S)-phenyl glycidic acid esters , 1992 .

[129]  M. Häggblom,et al.  Microbial breakdown of halogenated aromatic pesticides and related compounds. , 1992, FEMS microbiology reviews.

[130]  C. Wang,et al.  Molecular cloning and mapping of phenol degradation genes from Bacillus stearothermophilus FDTP-3 and their expression in Escherichia coli , 1992, Applied and environmental microbiology.

[131]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[132]  T. Patel,et al.  Metabolism of gallate in Penicillium simplicissimum , 1992, Journal of basic microbiology.

[133]  M. Bhat,et al.  Affinity purification and characterization of 2,4-dichlorophenol hydroxylase from Pseudomonas cepacia. , 1991, Archives of biochemistry and biophysics.

[134]  W. D. de Vos,et al.  Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region , 1991, Journal of bacteriology.

[135]  G. Chaudhry,et al.  Biodegradation of halogenated organic compounds , 1991, Microbiological reviews.

[136]  R. H. Olsen,et al.  Cloning and characterization of tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4 , 1990, Journal of bacteriology.

[137]  M. Schlömann,et al.  Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate , 1990, Journal of bacteriology.

[138]  M. Schlömann,et al.  Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria , 1990, Journal of bacteriology.

[139]  D. Ollis,et al.  Refined structure of dienelactone hydrolase at 1.8 A. , 1990, Journal of molecular biology.

[140]  A. Mahadevan,et al.  Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum. , 1990, Xenobiotica; the fate of foreign compounds in biological systems.

[141]  E. Perkins,et al.  Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4 , 1990, Journal of bacteriology.

[142]  R. H. Olsen,et al.  Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4 , 1990, Journal of bacteriology.

[143]  D. Pieper,et al.  Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. , 1990, The Biochemical journal.

[144]  J. Mattsson,et al.  The improbable association between the herbicide 2,4-D and polyneuropathy. , 1990, Biomedical and environmental sciences : BES.

[145]  D. Ghosal,et al.  Operon structure and nucleotide homology of the chlorocatechol oxidation genes of plasmids pJP4 and pAC27. , 1989, Gene.

[146]  M. Schell,et al.  Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the Rhizobium nodD genes , 1989, Journal of bacteriology.

[147]  R. Seidler,et al.  Phenoxyacetic acid degradation by the 2,4-dichlorophenoxyacetic acid (TFD) pathway of plasmid pJP4: mapping and characterization of the TFD regulatory gene, tfdR , 1989, Journal of bacteriology.

[148]  E. Perkins,et al.  Duplication of a 2,4-dichlorophenoxyacetic acid monooxygenase gene in Alcaligenes eutrophus JMP134(pJP4) , 1988, Journal of bacteriology.

[149]  G. Chaudhry,et al.  Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate , 1988, Journal of bacteriology.

[150]  S Henikoff,et al.  A large family of bacterial activator proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[151]  M. Gordon,et al.  Partial nucleotide sequence of the chlorocatechol degradative operon tfdCDEF of pJP4 and similarity to promoters of the chlorinated aromatic degradative operons tfdA and clcABD. , 1988, Nucleic acids research.

[152]  K. Timmis,et al.  Analysis, cloning, and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134 , 1987, Journal of bacteriology.

[153]  A. Greene,et al.  An efficient, enantioselective synthesis of the taxol side chain , 1986 .

[154]  M. Alexander,et al.  Reasons for possible failure of inoculation to enhance biodegradation , 1985, Applied and environmental microbiology.

[155]  R. Seidler,et al.  Characterization of aquatic bacteria and cloning of genes specifying partial degradation of 2,4-dichlorophenoxyacetic acid , 1985, Applied and environmental microbiology.

[156]  A. Chakrabarty,et al.  Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[157]  K. Timmis,et al.  Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4) , 1985, Journal of bacteriology.

[158]  R. H. Don,et al.  Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4 , 1985, Journal of bacteriology.

[159]  P. Chapman,et al.  Purification and properties of a plasmid‐encoded 2,4‐dichlorophenol hydroxylase , 1984, FEBS letters.

[160]  W. Reineke,et al.  Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols , 1984, Applied and environmental microbiology.

[161]  A. Chakrabarty,et al.  Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia , 1983, Applied and environmental microbiology.

[162]  M. Korhola,et al.  Degradation of catechol, methylcatechols and chlorocatechols by Pseudomonas sp. HV3 , 1983 .

[163]  R. H. Don Isolation and genetic and physical analysis of six bacterial plasmids : encoding degradation of the herbicide 2,4-dichlorophenoxyacetic acid , 1983 .

[164]  W. Fritsche,et al.  Degradation of aniline and monochloroanilines by Rhodococcus sp. An 117 and a pseudomonad: a comparative study. , 1983, Zeitschrift fur allgemeine Mikrobiologie.

[165]  A M Chakrabarty,et al.  Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia , 1982, Applied and environmental microbiology.

[166]  A. Smith,et al.  The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. , 1982, European journal of biochemistry.

[167]  D. Gibson,et al.  Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol , 1981, Applied and environmental microbiology.

[168]  R. H. Don,et al.  Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus , 1981, Journal of bacteriology.

[169]  R. G. Sutherland,et al.  The phenoxyalkanoic herbicides , 1981 .

[170]  H. Knackmuss,et al.  Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. , 1980, The Biochemical journal.

[171]  W. Reineke,et al.  Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives , 1980, Journal of bacteriology.

[172]  H. Neujahr,et al.  Maleylacetate reductase from Trichosporon cutaneum. , 1980, The Biochemical journal.

[173]  S. Dagley,et al.  Catabolism of L-tyrosine in Trichosporon cutaneum , 1979, Journal of bacteriology.

[174]  C. Daughton,et al.  Accelerated parathion degradation in soil inoculated with acclimated bacteria under field conditions , 1979, Archives of environmental contamination and toxicology.

[175]  P. Fisher,et al.  Isolation and characterization of the pesticide-degrading plasmid pJP1 from Alcaligenes paradoxus , 1978, Journal of bacteriology.

[176]  P. Fisher,et al.  2,4-D plasmids and persistence , 1977, Nature.

[177]  A. Chakrabarty Plasmids in Pseudomonas. , 1976, Annual review of genetics.

[178]  J. Lech,et al.  Studies on the mechanism of potentiation of the acute toxicity of 2,4-D n-butyl ester and 2',5-dichloro-4'-nitrosalicylanilide in rainbow trout by carbaryl. , 1976, Toxicology and applied pharmacology.

[179]  P. Geary Molecular Mechanisms of Oxygen Activation , 1975 .

[180]  R. K. Finn,et al.  Growth rates of a pseudomonad on 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol. , 1974, Applied microbiology.

[181]  M. T. Abbott,et al.  5 – α-KETOGLUTARATE-COUPLED DIOXYGENASES , 1974 .

[182]  W. Fletcher The pest war , 1974 .

[183]  J. Duxbury,et al.  2, 4-Dichlorophenoxyacetate Metabolism by Arthrobacter sp.: Accumulation of a Chlorobutenolide , 1973, Applied microbiology.

[184]  H. Kamin,et al.  Studies of a flavoprotein, salicylate hydroxylase. I. Preparation, properties, and the uncoupling of oxygen reduction from hydroxylation. , 1972, The Journal of biological chemistry.

[185]  H. N. Fernley,et al.  Bacterial metabolism of 2,4-dichlorophenoxyacetate. , 1971, The Biochemical journal.

[186]  J. Gaunt,et al.  Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by side-chain cleavage. , 1971, The Biochemical journal.

[187]  R. Horvath Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. , 1970, The Biochemical journal.

[188]  J. Duxbury,et al.  2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. , 1970, Journal of agricultural and food chemistry.

[189]  S. Wright,et al.  Detoxication of isopropyL N-phenylcarbamate (IPC) and isopropyl N-3-chlorophenylcarbamate (CIPC) in soil, and isolation of IPC-metabolizing bacteria , 1970 .

[190]  J. Menzies Soil Biology—Reviews of Research , 1970 .

[191]  M. Calvin,et al.  Studies on p-hydroxybenzoate hydroxylase from Pseudomonas putida. , 1969, The Journal of biological chemistry.

[192]  J. Duxbury,et al.  2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. , 1969, Journal of agricultural and food chemistry.

[193]  J. Tiedje,et al.  Enzymic cleavage of the ether bond of 2,4-dichlorophenoxyacetate. , 1969, Journal of agricultural and food chemistry.

[194]  H. Sanders Toxicity of pesticides to the crustacean Gammarus lacustris , 1969 .

[195]  M. Alexander,et al.  2,4-D metabolism. Enzymic degradation of chloropyrocatechols , 1968 .

[196]  C. Helling,et al.  2,4-D Metabolism. Enzymic hydroxylation of chlorinated phenols , 1968 .

[197]  M. Alexander,et al.  Formation of 2,4-dichlorophenol and 2,4-dichloroanisole from 2,4-dichlorophen-oxyacetate by Arthrobacter sp. , 1967, Canadian journal of microbiology.

[198]  M. Alexander,et al.  Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species. , 1967, Canadian journal of microbiology.

[199]  M. Alexander,et al.  Phenoxyacetate herbicide detoxication by bacterial enzymes , 1967 .

[200]  Y. Gamar Studies on the bacterial metabolism of 4-chloro-2-methyl-phenoxyacetic acid. , 1967 .

[201]  R. Stanier,et al.  Crystallization and properties of p-hydroxybenzoate hydroxylase from Pseudomonas putida. , 1966, The Journal of biological chemistry.

[202]  H. Maeno,et al.  SALICYLATE HYDROXYLASE, A MONOOXYGENASE REQUIRING FLAVIN ADENINE DINUCLEOTIDE. I. PURIFICATION AND GENERAL PROPERTIES. , 1965, The Journal of biological chemistry.

[203]  J. K. Faulkner,et al.  209. Fungal detoxication. Part VII. Metabolism of 2,4-dichloro-phenoxyacetic and 4-chloro-2-methylphenoxyacetic acids by Aspergillus niger , 1965 .

[204]  A. Rovira,et al.  THE DECOMPOSITION OF 4-(2,4-DICHLOROPHENOXY) BUTYRIC ACID BY FLAVOBACTERIUM SP. , 1963, Journal of general microbiology.

[205]  J. K. Faulkner,et al.  1063. Fungal detoxication. Part V. Metabolism of o- and p-chlorophenoxyacetic acids by Aspergillus niger , 1961 .

[206]  G. Bell Some morphological and biochemical characteristics of a soil bacterium which decomposes 2, 4-dichlorophenoxyacetic acid. , 1957, Canadian journal of microbiology.

[207]  N. Walker,et al.  The pathway of breakdown of 2:4-dichloro- and 4-chloro-2-methyl-phenoxyacetic acid by bacteria. , 1957, Journal of general microbiology.

[208]  R. Walker,et al.  Microbial decomposition of 2, 4-dichlorophenoxyacetic acid. , 1956, Applied microbiology.

[209]  M. H. Rogoff,et al.  BACTERIAL DECOMPOSITION OF 2,4-DICHLOROPHENOXYACETIC ACID , 1956, Journal of bacteriology.

[210]  H. Jensen,et al.  Decomposition of hormone herbicides by bacteria , 1952 .

[211]  A. G. Norman The fate of complex organic compounds in soil. , 1950 .

[212]  J. Thomas,et al.  Decomposition of 2,4-dichlorophenoxyacetic acid in the soil and liquid media. , 1950 .

[213]  James R. Thomas,et al.  Decomposition of 2,4-dichlorophenoxyacetic Acid in Soil and Liquid Media1 , 1950 .

[214]  J. H. Quastel,et al.  Plant-Growth Substances as Selective Weed-Killers: Inhibition of Plant Growth by 2:4-Dichlorophenoxyacetic Acid and other Plant-Growth Substances , 1945, Nature.

[215]  Bio Factsheet Plant Growth-Substances , 1939, Nature.

[216]  Subhash Kak Inoculation , 1800, The Medical and physical journal.