A general method for proving decidability of intuitionistic modal logics

Abstract We generalise the result of [H. Ganzinger, C. Meyer, M. Veanes, The two-variable guarded fragment with transitive relations, in: Proc. 14th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1999, pp. 24–34] on decidability of the two variable monadic guarded fragment of first order logic with constraints on the guard relations expressible in monadic second order logic. In [H. Ganzinger, C. Meyer, M. Veanes, The two-variable guarded fragment with transitive relations, in: Proc. 14th IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1999, pp. 24–34], such constraints apply to one relation at a time. We modify their proof to obtain decidability for constraints involving several relations. Now we can use this result to prove decidability of multi-modal modal logics where conditions on accessibility relations involve more than one relation. Our main application is intuitionistic modal logic, where the intuitionistic and modal accessibility relations usually interact in a non-trivial way.

[1]  Michael Mendler,et al.  Propositional Lax Logic , 1997, Inf. Comput..

[2]  F. Wolter,et al.  Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics , 1997 .

[3]  R. A. Bull Some Modal Calculi Based On IC , 1965 .

[4]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[5]  Jean Goubault-larrecq,et al.  Logical Foundations of Eval/Quote Mechanisms, and the Modal Logic S4 , 1997 .

[6]  Satoshi Kobayashi,et al.  Monad as Modality , 1997, Theor. Comput. Sci..

[7]  Natasha Alechina,et al.  Categorical and Kripke Semantics for Constructive S4 Modal Logic , 2001, CSL.

[8]  H. Ono On Some Intuitionistic Modal Logics , 1977 .

[9]  Colin Stirling,et al.  Modal Logics for Communicating Systems , 1987, Theor. Comput. Sci..

[10]  Wieslaw Szwast,et al.  On the decision problem for the guarded fragment with transitivity , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[11]  Natasha Alechina,et al.  Categorical and Kripke Semantics for Constructive Modal Logics , 2001 .

[12]  Gordon D. Plotkin,et al.  A Framework for Intuitionistic Modal Logics , 1988, TARK.

[13]  Duminda Wijesekera,et al.  Constructive Modal Logics I , 1990, Ann. Pure Appl. Log..

[14]  Emanuel Kieronski,et al.  The Two-Variable Guarded Fragment with Transitive Guards Is 2EXPTIME-Hard , 2003, FoSSaCS.

[15]  F. Wolter,et al.  Intuitionistic Modal Logic , 1999 .

[16]  Frank Pfenning,et al.  A modal analysis of staged computation , 1996, POPL '96.

[17]  J. Cheney,et al.  A sequent calculus for nominal logic , 2004, LICS 2004.

[18]  Frank Wolter,et al.  Advanced modal logic , 1996 .

[19]  Frank Pfenning,et al.  A judgmental reconstruction of modal logic , 2001, Mathematical Structures in Computer Science.

[20]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[21]  Gordon Plotkin,et al.  A framework for intuitionistic modal logics: extended abstract , 1986 .

[22]  R. Goldblatt Metamathematics of modal logic , 1974, Bulletin of the Australian Mathematical Society.

[23]  J. N. Crossley,et al.  Formal Systems and Recursive Functions , 1963 .

[24]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[25]  Kosta Dosen,et al.  Models for stronger normal intuitionistic modal logics , 1985, Stud Logica.

[26]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[27]  R. A. Bull A modal extension of intuitionist logic , 1965, Notre Dame J. Formal Log..

[28]  Ettore Casari,et al.  Logic and the Foundations of Mathematics , 1981 .

[29]  Alex K. Simpson,et al.  The proof theory and semantics of intuitionistic modal logic , 1994 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[32]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[33]  F. Wolter,et al.  The relation between intuitionistic and classical modal logics , 1997 .

[34]  R. A. Bull MIPC as the Formalisation of an Intuitionist Concept of Modality , 1966, J. Symb. Log..

[35]  Nick Benton,et al.  Computational types from a logical perspective , 1998, Journal of Functional Programming.

[36]  Michael Mendler,et al.  Constrained Proofs: A Logic for Dealing with Behavioural Constraints in Formal Hardware Verification , 1991 .

[37]  Margus Veanes,et al.  The two-variable guarded fragment with transitive relations , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).