Multiresolution analysis and reconstruction by a morphological pyramid in the remote sensing of terrestrial surfaces

This paper investigates the use of morphological tools for the multiresolution analysis of remote sensing imagery in the field of spatial dynamics on terrestrial surfaces. It presents a multiresolution analysis which exploits the properties of the non-linear operators of mathematical morphology. The aim is to break down the overlapping of elements constituting the organization of landscapes. The methodology behind multiresolution analysis is then presented, based on a morphological pyramid which links a physically significant morphological filter with a dyadic decomposition. The results of the inverse transformation are described by reconstruction of the images. These results enable the photometry stability of the transformation to be verified. An application is described in a real case of observation with satellite images. The interpretation of the results shows the successive information which are available at different stages of analysis.

[1]  Jean Paul Frédéric Serra Morphological filtering: An overview , 1994, Signal Process..

[2]  Maria da Conceiçao Machado Sangreman Proença La transformée en ondelettes appliquée au traitement d'images de télédétection , 1992 .

[3]  Montse Pardàs,et al.  Morphological operators for image and video compression , 1996, IEEE Trans. Image Process..

[4]  Jean Serra,et al.  Morphological pyramids for image coding , 1993, Other Conferences.

[5]  David L.B. Jupp,et al.  Detecting Structural and Growth Changes in Woodlands and Forests: The Challenge for Remote Sensing and the Role of Geometric-Optical Modelling , 1997 .

[6]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[7]  A. Rosenfeld Some Useful Properties of Pyramids , 1984 .

[8]  K. W. Cattermole The Fourier Transform and its Applications , 1965 .

[9]  Alexander Toet,et al.  A morphological pyramidal image decomposition , 1989, Pattern Recognit. Lett..

[10]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[11]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[12]  G. Uehara,et al.  Application of Geostatistics to Spatial Studies of Soil Properties , 1986 .

[13]  J. Serra,et al.  An overview of morphological filtering , 1992 .

[14]  Petros Maragos,et al.  Experiments on Image Compression Using Morphological Pyramids , 1989, Other Conferences.

[15]  Ronald W. Schafer,et al.  A non-expansive pyramidal morphological image coder , 1994, Proceedings of 1st International Conference on Image Processing.

[16]  David Marr,et al.  Visual Information Processing: The Structure and Creation of Visual Representations , 1980 .

[17]  Paul G. Risser,et al.  Scales and Global Change. , 1989 .

[18]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[19]  G. Matheron Principles of geostatistics , 1963 .

[20]  Jean Serra Structures syntaxiques en morphologie mathématique , 1984 .

[21]  Guy Flouzat,et al.  Spatial and spectral segmentation of satellite remote sensing imagery using processing graphs by mathematical morphology , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[22]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[23]  Kidiyo Kpalma,et al.  Cooperation of mathematical morphology and region growing for remote sensing image segmentation , 1995, Remote Sensing.

[24]  D. Jeulin,et al.  Application of multivariate geostatistics to macroprobe mappings in steels. , 1990 .

[25]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[27]  G. Flouzat,et al.  Orthogonal Wavelet Analysis: A Multiresolution Tool Applied to Remote Sensed Images , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[28]  A. Chehikian 1 - Algorithmes optimaux pour la génération de pyramides d'images passe-bas et laplaciennes , 1992 .

[29]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[30]  Richard M. Stern,et al.  Fast Computation of the Difference of Low-Pass Transform , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Azriel Rosenfeld,et al.  A Pyramid Framework for Early Vision , 1994 .