A Novel Adaptive Sampling by Tsallis Entropy

Monte Carlo is the only choice of physically correct method to compute the problem of global illumination in the field of realistic image synthesis. Adaptive sampling is an appealing tool to eliminate noise, which is one of the main problems of Monte Carlo based global illumination algorithms. In this paper, we investigate the use of entropy in the domain of information theory to measure pixel quality and to do adaptive sampling. Especially we explore the nonextensive Tsallis entropy, in which a real number q is introduced as the entropic index that presents the degree of nonextensivity, to evaluate pixel quality. By utilizing the least-squares design, an entropic index q can be obtained systematically to run adaptive sampling effectively. Implementation results show that the Tsallis entropy driven adaptive sampling significantly outperforms the existing methods.

[1]  Sumiyoshi Abe,et al.  Correlation induced by Tsallis’ nonextensivity , 1999 .

[2]  A. R. Plastino,et al.  Why Tsallis’ statistics? , 2004 .

[3]  Constantino Tsallis,et al.  Nonextensive statistical mechanics: A brief introduction , 2004 .

[4]  J. Painter,et al.  Antialiased ray tracing by adaptive progressive refinement , 1989, SIGGRAPH.

[5]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[6]  Don P. Mitchell,et al.  Generating antialiased images at low sampling densities , 1987, SIGGRAPH.

[7]  Jacek M. Zurada,et al.  An information-theoretic approach to estimating ultrasound backscatter characteristics , 2004, Comput. Biol. Medicine.

[8]  Mateu Sbert,et al.  An Information Theory Framework for the Analysis of Scene Complexity , 1999, Comput. Graph. Forum.

[9]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[10]  Márcio Portes de Albuquerque,et al.  Image thresholding using Tsallis entropy , 2004, Pattern Recognit. Lett..

[11]  J. Arvo,et al.  Unbiased Variance Reduction for Global Illumination , 1994 .

[12]  James Arvo,et al.  A framework for realistic image synthesis , 1997, SIGGRAPH.

[13]  Werner Purgathofer,et al.  A statistical method for adaptive stochastic sampling , 1986, Comput. Graph..

[14]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[15]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[16]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[17]  Samuel P. Uselton,et al.  Statistically optimized sampling for distributed ray tracing , 1985, SIGGRAPH.

[18]  Mateu Sbert,et al.  New Contrast Measures for Pixel Supersampling , 2002 .

[19]  Gary W. Meyer,et al.  A perceptually based adaptive sampling algorithm , 1998, SIGGRAPH.

[20]  S. Abe Axioms and uniqueness theorem for Tsallis entropy , 2000, cond-mat/0005538.

[21]  Carlo H. Séquin,et al.  Tapestry: A Dynamic Mesh-based Display Representation for Interactive Rendering , 2000, Rendering Techniques.

[22]  Henrik Wann Jensen,et al.  Adaptive Smpling and Bias Estimation in Path Tracing , 1997, Rendering Techniques.

[23]  James T. Kajiya,et al.  The rendering equation , 1998 .

[24]  Sumiyoshi Abe Tsallis entropy: how unique? , 2004 .

[25]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[26]  J. Crutchfield,et al.  Measures of statistical complexity: Why? , 1998 .

[27]  Mateu Sbert,et al.  Entropy-based Adaptive Sampling , 2003, Graphics Interface.

[28]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[29]  Mateu Sbert,et al.  Refinement Criteria Based on f-Divergences , 2003, Rendering Techniques.