High-Resolution X-Ray Spectroscopy of the Interstellar Medium. II. Neon and Iron Absorption Edges

We present high-resolution spectroscopy of the neon K-shell and iron L-shell interstellar absorption edges in nine X-ray binaries using the High Energy Transmission Grating Spectrometer (HETGS) on board the Chandra X-Ray Observatory. We found that the iron absorption is well fit by an experimental determination of the cross section for metallic iron, although with a slight wavelength shift of ≈20 mA. The neon edge region is best fit by a model that includes the neutral neon edge and three Gaussian absorption lines. We identify these lines as due to the 1s-2p transitions from Ne II, Ne III, and Ne IX. As we found in our oxygen edge study, the theoretical predictions for neutral and low-ionization lines all require shifts of ≈20 mA to match our data. Combined with our earlier oxygen edge study, we find that a best-fit O/Ne ratio of 5.4 ± 1.6, consistent with standard interstellar abundances. Our best-fit Fe/Ne ratio of 0.20 ± 0.03 is significantly lower than the interstellar value. We attribute this difference to iron depletion into dust grains in the interstellar medium. We make the first measurement of the neon ionization fraction in the ISM. We find Ne /Ne ≈ 0.3 and Ne /Ne ≈ 0.07. These values are larger than is expected given the measured ionization of interstellar helium. For Ne IX, our results confirm the detection of the hot ionized interstellar medium of the Galaxy.

[1]  Norbert S. Schulz,et al.  High-Resolution X-Ray Spectroscopy of the Interstellar Medium: Structure at the Oxygen Absorption Edge , 2004 .

[2]  W. E. Harris,et al.  Photospheric radius expansion X-ray bursts as standard candles , 2002, astro-ph/0212028.

[3]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[4]  Y. Feng,et al.  Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra , 2003, astro-ph/0308254.

[5]  R. J. Reynolds,et al.  A search for the He I lambda 5876 recombination line from the diffuse interstellar medium , 1995 .

[6]  Q. Wang,et al.  X-Ray Absorption Line Spectroscopy of the Galactic Hot Interstellar Medium , 2005, astro-ph/0502242.

[7]  T. Chlebowski,et al.  High Resolution Soft X-Ray Spectra of Scorpius X-1: The Structure of Circumsource Accreting Material , 1984 .

[8]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[9]  C. Heiles,et al.  Diffuse Interstellar Gas , 1987 .

[10]  Dmitri A. Verner,et al.  SUBSHELL PHOTOIONIZATION CROSS-SECTIONS AND IONIZATION ENERGIES OF ATOMS AND IONS FROM HE TO ZN , 1993 .

[12]  What Is the Neon Abundance of the Sun , 2005, astro-ph/0502563.

[13]  R. Fujimoto,et al.  Detection of Highly Ionized O and Ne Absorption Lines in the X-Ray Spectrum of 4U 1820–303 in the Globular Cluster NGC 6624 , 2003, astro-ph/0310867.

[14]  Mark L. Schattenburg,et al.  The Chandra High‐Energy Transmission Grating: Design, Fabrication, Ground Calibration, and 5 Years in Flight , 2005, astro-ph/0507035.

[15]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[16]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[17]  Modeling the Warm Ionized Interstellar Medium and Its Impact on Elemental Abundance Studies , 1999, astro-ph/9908051.

[18]  A. Fabian,et al.  Revealing the Focused Companion Wind in Cygnus X-1 with Chandra , 2002, astro-ph/0208463.

[19]  Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III* , 1998, astro-ph/9810442.

[20]  P. G. Jonker,et al.  The distances to Galactic low-mass X-ray binaries: consequences for black hole luminosities and kicks , 2004 .

[21]  Revealing the Dusty Warm Absorber in MCG –6-30-15 with the Chandra High-Energy Transmission Grating , 2001, astro-ph/0101065.

[22]  J. Kortright,et al.  Resonant magneto-optical properties of Fe near its 2p levels: [] Measurement and applications , 2000 .

[23]  J. W. den Herder,et al.  The interstellar oxygen-K absorption edge as observed by XMM-Newton - Separation of instrumental and interstellar components , 2003 .

[24]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[25]  D. Chakrabarty,et al.  X-Ray Spectroscopy of the Low-Mass X-Ray Binaries 2S 0918–549 and 4U 1543–624: Evidence for Neon-rich Degenerate Donors , 2002, astro-ph/0206417.

[26]  Christopher F. McKee,et al.  Photoionization of Galactic Halo Gas by Old Supernova Remnants , 2000, astro-ph/0001094.

[27]  B. L. Henke,et al.  X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92 , 1993 .

[28]  S. Mathur,et al.  The far-ultraviolet signature of the ‘missing’ baryons in the Local Group of galaxies , 2003, Nature.

[29]  A. Abian,et al.  CHANDRA/HETGS SPECTROSCOPY OF THE GALACTIC BLACK HOLE GX 33 9−4: A RELATIVISTIC IRON EMISSION LINE AND EVIDENCE FOR A SEYFERT-LIKE WARM ABSORBER , 2008 .

[30]  R. J. Reynolds,et al.  A Comparison of Diffuse Ionized and Neutral Hydrogen Away from the Galactic Plane: H alpha -emitting H i Clouds , 1995 .

[31]  A. Fabian,et al.  High-Resolution Chandra HETGS and Rossi X-Ray Timing Explorer Observations of GRS 1915+105: A Hot Disk Atmosphere and Cold Gas Enriched in Iron and Silicon , 2001, astro-ph/0111132.

[32]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[33]  Ryuichi Fujimoto,et al.  O and Ne K Absorption Edge Structures and Interstellar Abundance toward Cygnus X-2 , 2002 .

[34]  P. Martin On the Interaction of Cosmic X-Rays with Interstellar Grains , 1970 .

[35]  Kazuhisa Mitsuda,et al.  Study of the Galactic Interstellar Medium from High-Resolution X-Ray Spectroscopy: X-Ray Absorption Fine Structure and Abundances of O, Mg, Si, S, and Fe , 2004, astro-ph/0410655.

[36]  J. Lee,et al.  The First High-Resolution X-Ray Spectrum of Cygnus X-1: Soft X-Ray Ionization and Absorption , 2001, astro-ph/0109236.

[37]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[38]  M. Schattenburg,et al.  High-resolution X-ray spectroscopy of the Crab Nebula and the oxygen abundance of the interstellar medium , 1986 .

[39]  J. Garst,et al.  Neon Lights up a Controversy: The Solar Ne/O Abundance , 2005, astro-ph/0510230.

[40]  Jonathan W. Woo,et al.  EXAFS and XANES: New Astrophysical Tools to Study the Solid State Structure of Interstellar Grains , 1995 .

[41]  Constraining the Extra Heating of the Diffuse Ionized Gas in the Milky Way , 2005, astro-ph/0506601.

[42]  Chandra Phase-Resolved Spectroscopy of the Crab Pulsar , 2003, astro-ph/0310332.

[43]  K. Prince,et al.  Measurement and ab initio calculation of the Ne photoabsorption spectrum in the region of the K edge , 1999 .

[44]  A. C. Brinkman,et al.  Interstellar X-Ray Absorption Spectroscopy of Oxygen, Neon, and Iron with the Chandra LETGS Spectrum of X0614+091 , 2001 .

[45]  The ‘solar model problem’ solved by the abundance of neon in nearby stars , 2005, Nature.

[46]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[47]  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[48]  P. V. van Aken,et al.  Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra , 2002 .

[49]  Martin C. Weisskopf,et al.  CHANDRA PHASE-RESOLVED X-RAY SPECTROSCOPY OF THE CRAB PULSAR , 2004, 1106.3270.

[50]  S. N.S,et al.  THE FIRST HIGH-RESOLUTION X-RAY SPECTRUM OF CYGNUS X-1 : SOFT X-RAY IONIZATION AND ABSORPTION , 2022 .

[51]  Y. Feng,et al.  Probing the Inflow/Outflow and Accretion Disk of Cygnus X-1 in the High State with the Chandra High Energy Transmission Grating , 2003 .

[52]  T. W. Gorczyca,et al.  Auger decay of the photoexcited 2p-1nl Rydberg series in argon , 1999 .

[53]  Christopher T. Chantler,et al.  Theoretical Form Factor, Attenuation, and Scattering Tabulation for Z=1–92 from E=1–10 eV to E=0.4–1.0 MeV , 1995 .

[54]  J. Wilms,et al.  Absorption Of X-rays In The Interstellar Medium , 2000, astro-ph/0008425.