Investigation on dynamic performance and parameter optimization design of pantograph and catenary system

The dynamic performance of the simple catenary and the pantograph was simulated. The model of the catenary was established with the finite element method (FEM), and the pantograph was also simplified as a lumped mass model. Furthermore, based on the contact element between pantograph and catenary and the time integration method, the dynamic simulation of pantograph and catenary system was performed and the results of dynamic performance was obtained. According to the simulation results, it shows that the pantograph can run at a speed of 250km/h and the contact loss is detected for the speed larger than 250km/h. Subsequently the influence of the design parameters on the contact force was discussed and the optimization of the parameters was performed, the results show that the parameters, including the stiffness and damping of the pan-head and frame, the static lifted force and the tension of the contact wire, have a heavy influence on the dynamic performance of pantograph and catenary system. At last, a comparison of the contact force with the test datum is carried out, and it is showed that the agreement between the simulation results and the test datum is generally good.