Calderon's inverse conductivity problem in the plane

We show that the Dirichlet to Neumann map for the equation ∇·σ∇u =0 in a two-dimensional domain uniquely determines the bounded measurable �

[1]  Gunther Uhlmann,et al.  Complex geometrical optics solutions for Lipschitz conductivities , 2003 .

[2]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[3]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[4]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[5]  Tadeusz Iwaniec,et al.  Geometric Function Theory and Non-linear Analysis , 2002 .

[6]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[7]  L. Ahlfors Conformal Invariants: Topics in Geometric Function Theory , 1973 .

[8]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[9]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[10]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[11]  Lipman Bers,et al.  Theory of pseudo-analytic functions , 1953 .

[12]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[13]  D. R. Smart Fixed Point Theorems , 1974 .

[14]  J. Sylvester,et al.  Ann-dimensional Borg-Levinson theorem , 1988 .

[15]  B. Palka An Introduction to Complex Function Theory , 1995 .

[16]  B H Brown,et al.  Clinical applications of electrical impedance tomography. , 1993, Journal of medical engineering & technology.

[17]  P. Koskela GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs) By TADEUSZ IWANIEC and GAVEN MARTIN: 552 pp., £75.00, ISBN 0-19-85029-4 (Oxford University Press, 2001) , 2002 .

[18]  Gunther Uhlmann,et al.  Generic uniqueness for an inverse boundary value problem , 1991 .

[19]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[20]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[21]  E. Saksman,et al.  Beltrami operators in the plane , 2001 .

[22]  R. Kohn,et al.  Determining conductivity by boundary measurements II. Interior results , 1985 .

[23]  Gunther Uhlmann,et al.  Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .

[24]  J. Craggs Applied Mathematical Sciences , 1973 .

[25]  Olli Lehto,et al.  Quasiconformal mappings in the plane , 1973 .

[26]  Tadeusz Iwaniec,et al.  Extremal inequalities in Sobolev spaces and quasiconformal mappings , 1982 .

[27]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[28]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[29]  Kari Astala,et al.  A boundary integral equation for Calderón's inverse conductivity problem , 2006 .

[30]  Alexandru Tamasan,et al.  Reconstruction of Less Regular Conductivities in the Plane , 2001 .

[31]  D. H. Hamilton,et al.  ON THE AREA DISTORTION BY QUASICONFORMAL MAPPINGS , 1995 .

[32]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[33]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .