Calderon's inverse conductivity problem in the plane
暂无分享,去创建一个
[1] Gunther Uhlmann,et al. Complex geometrical optics solutions for Lipschitz conductivities , 2003 .
[2] David Isaacson,et al. Electrical Impedance Tomography , 1999, SIAM Rev..
[3] David Isaacson,et al. An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .
[4] A. Nachman,et al. Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .
[5] Tadeusz Iwaniec,et al. Geometric Function Theory and Non-linear Analysis , 2002 .
[6] Robert V. Kohn,et al. Determining conductivity by boundary measurements , 1984 .
[7] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[8] J. Sylvester,et al. A global uniqueness theorem for an inverse boundary value problem , 1987 .
[9] D. Isaacson,et al. An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .
[10] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[11] Lipman Bers,et al. Theory of pseudo-analytic functions , 1953 .
[12] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[13] D. R. Smart. Fixed Point Theorems , 1974 .
[14] J. Sylvester,et al. Ann-dimensional Borg-Levinson theorem , 1988 .
[15] B. Palka. An Introduction to Complex Function Theory , 1995 .
[16] B H Brown,et al. Clinical applications of electrical impedance tomography. , 1993, Journal of medical engineering & technology.
[17] P. Koskela. GEOMETRIC FUNCTION THEORY AND NON-LINEAR ANALYSIS (Oxford Mathematical Monographs) By TADEUSZ IWANIEC and GAVEN MARTIN: 552 pp., £75.00, ISBN 0-19-85029-4 (Oxford University Press, 2001) , 2002 .
[18] Gunther Uhlmann,et al. Generic uniqueness for an inverse boundary value problem , 1991 .
[19] A. Nachman,et al. Reconstructions from boundary measurements , 1988 .
[20] MATTI LASSAS,et al. Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .
[21] E. Saksman,et al. Beltrami operators in the plane , 2001 .
[22] R. Kohn,et al. Determining conductivity by boundary measurements II. Interior results , 1985 .
[23] Gunther Uhlmann,et al. Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions , 1997 .
[24] J. Craggs. Applied Mathematical Sciences , 1973 .
[25] Olli Lehto,et al. Quasiconformal mappings in the plane , 1973 .
[26] Tadeusz Iwaniec,et al. Extremal inequalities in Sobolev spaces and quasiconformal mappings , 1982 .
[27] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[28] Faming Liang,et al. Statistical and Computational Inverse Problems , 2006, Technometrics.
[29] Kari Astala,et al. A boundary integral equation for Calderón's inverse conductivity problem , 2006 .
[30] Alexandru Tamasan,et al. Reconstruction of Less Regular Conductivities in the Plane , 2001 .
[31] D. H. Hamilton,et al. ON THE AREA DISTORTION BY QUASICONFORMAL MAPPINGS , 1995 .
[32] A. Calderón,et al. On an inverse boundary value problem , 2006 .
[33] L. Ahlfors,et al. Lectures on quasiconformal mappings , 1966 .