Potential of niobium-based thin films as a protective and osteogenic coating for dental implants: The role of the nonmetal elements.

[1]  I. Iatsunskyi,et al.  Influence of ZnO/graphene nanolaminate periodicity on their structural and mechanical properties , 2018, Journal of Materials Science & Technology.

[2]  I. Iatsunskyi,et al.  Mechanical properties of boron nitride thin films prepared by atomic layer deposition , 2017 .

[3]  C. Sukotjo,et al.  Tribocorrosion behavior of biofunctional titanium oxide films produced by micro-arc oxidation: Synergism and mechanisms. , 2016, Journal of the mechanical behavior of biomedical materials.

[4]  O. Ogle Implant surface material, design, and osseointegration. , 2015, Dental clinics of North America.

[5]  S. Moya,et al.  Nb-C nanocomposite films with enhanced biocompatibility and mechanical properties for hard-tissue implant applications. , 2015, ACS applied materials & interfaces.

[6]  Dan Lin,et al.  Kaolin-reinforced 3D MBG scaffolds with hierarchical architecture and robust mechanical strength for bone tissue engineering. , 2014, Journal of materials chemistry. B.

[7]  U. Jansson,et al.  Sputter deposition of transition-metal carbide films - A critical review from a chemical perspective , 2013 .

[8]  Seungmi Ryu,et al.  Culture of neural cells and stem cells on graphene , 2013, Tissue Engineering and Regenerative Medicine.

[9]  Hom-Lay Wang,et al.  Implant Microdesigns and Their Impact on Osseointegration , 2013, Implant dentistry.

[10]  P. Wooley,et al.  Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris. , 2013, Acta orthopaedica Belgica.

[11]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[12]  L. Escobar-Alarcón,et al.  Mechanical and electrochemical characterization of vanadium nitride (VN) thin films , 2011 .

[13]  G. Pastorin,et al.  Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. , 2011, ACS nano.

[14]  F. Miculescu,et al.  Preparation and characterization of biocompatible Nb–C coatings , 2011 .

[15]  Jhon Jairo Olaya,et al.  Niobium based coatings for dental implants , 2011 .

[16]  L. Escobar-Alarcón,et al.  Amorphous niobium oxide thin films , 2010 .

[17]  M. Endo,et al.  Carbon nanotubes: biomaterial applications. , 2009, Chemical Society reviews.

[18]  Y. Konttinen,et al.  Load-Bearing Biomedical Applications of Diamond-Like Carbon Coatings - Current Status , 2008, The open orthopaedics journal.

[19]  M. Stevens,et al.  Exploring cellular behaviour with multi-walled carbon nanotube constructs , 2007 .

[20]  P. Pavasant,et al.  Ti-6Al-7Nb promotes cell spreading and fibronectin and osteopontin synthesis in osteoblast-like cells , 2006, Journal of materials science. Materials in medicine.

[21]  M. von Walter,et al.  Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. , 2006, Biomaterials.

[22]  S. Komaba,et al.  Electrochemical and In Situ XAFS-XRD Investigation of Nb2O5 for Rechargeable Lithium Batteries , 2006 .

[23]  G. Dearnaley,et al.  Biomedical applications of diamond-like carbon (DLC) coatings: A review , 2005 .

[24]  S. Spriano,et al.  Surface properties and cell response of low metal ion release Ti-6Al-7Nb alloy after multi-step chemical and thermal treatments. , 2005, Biomaterials.

[25]  E. Eisenbarth,et al.  Biocompatibility of β-stabilizing elements of titanium alloys , 2004 .

[26]  C. A. Huang,et al.  Electrochemical corrosion properties of Ti–6Al–4V implant alloy in the biological environment , 2004 .

[27]  Hom-Lay Wang,et al.  Dental Implant Design and Its Relationship to Long-Term Implant Success , 2003, Implant dentistry.

[28]  M. Metikoš-huković,et al.  The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. , 2003, Biomaterials.

[29]  T. Komatsu,et al.  Universal hardness and elastic recovery in Vickers nanoindentation of copper phosphate and silicate glasses , 2003 .

[30]  Alfred Grill,et al.  Diamond-like carbon coatings as biocompatible materials—an overview , 2003 .

[31]  A. Yokoyama,et al.  Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. , 2001, Biomaterials.

[32]  V A Marker,et al.  Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. , 2000, The International journal of oral & maxillofacial implants.

[33]  C. Ai,et al.  Correlation between three-body wear and tribological characteristics of titanium nitride, titanium carbonitride and titanium carbide coatings , 1997 .

[34]  Peter Blau,et al.  Friction science and technology , 1995 .

[35]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[36]  E. Salvati,et al.  Metallic debris in femoral endosteolysis in failed cemented total hip arthroplasties. , 1992, Clinical orthopaedics and related research.

[37]  Q. Meng,et al.  Reactive magnetron sputtering deposition and characterization of niobium carbide films , 2014 .

[38]  J. Pritchett One-component revision of failed hip resurfacing from adverse reaction to metal wear debris. , 2014, The Journal of arthroplasty.

[39]  J. Jansen,et al.  Dental Implant Surface Enhancement and Osseointegration , 2011 .

[40]  Mohd Roshdi Hassan,et al.  Metallic biomaterials of knee and hip - a review , 2010 .

[41]  R. Woody,et al.  Implant materials, design, and surface topographies: their influence on osseointegration of dental implants. , 2003, Journal of long-term effects of medical implants.