Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins

Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors. However, all the previous schemes have to use at least two sequentially implemented gates to realize a general one-qubit gate. Based on two recent reports, we construct two Hamiltonians and experimentally realized nonadiabatic holonomic gates by a single-shot implementation in a two-qubit nuclear magnetic resonance (NMR) system. Two noncommuting one-qubit holonomic gates, rotating along ˆx and ˆz axes respectively, are implemented by evolving a work qubit and an ancillary qubit nonadiabatically following a quantum circuit designed. Using a sequence compiler developed for NMR quantum information processor, we optimize the whole pulse sequence, minimizing the total error of the implementation. Finally, all the nonadiabatic holonomic gates reach high unattenuated experimental fidelities over 98%.

[1]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[2]  R. Laflamme,et al.  Digital quantum simulation of the statistical mechanics of a frustrated magnet , 2011, Nature Communications.

[3]  Hui Yan,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions , 2014 .

[4]  Vahid Azimi Mousolou,et al.  Non-Abelian geometric phases in a system of coupled quantum bits , 2013, 1307.5315.

[5]  Jens Siewert,et al.  Non-Abelian holonomies, charge pumping, and quantum computation with Josephson junctions. , 2003, Physical review letters.

[6]  G. Long,et al.  Simulation of Heisenberg XY interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance , 2005, quant-ph/0503199.

[7]  Jae-Seung Lee,et al.  The quantum state tomography on an NMR system , 2002 .

[8]  D. M. Tong,et al.  Non-adiabatic Holonomic Gates realized by a single-shot implementation , 2015, 1511.00919.

[9]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[10]  Xiaoguang Wang,et al.  An alternative quantum fidelity for mixed states of qudits , 2008, 0807.1781.

[11]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[12]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[13]  Yao Lu,et al.  Experimental digital quantum simulation of temporal–spatial dynamics of interacting fermion system , 2015 .

[14]  Vahid Azimi Mousolou,et al.  Universal non-adiabatic holonomic gates in quantum dots and single-molecule magnets , 2012, 1209.3645.

[15]  Hang Li,et al.  Experimental Study of Forrelation in Nuclear Spins , 2016, Science bulletin.

[16]  Xinhua Peng,et al.  Experimental simulation of the Unruh effect on an NMR quantum simulator , 2016 .

[17]  Guilu Long,et al.  Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces , 2014, Scientific reports.

[18]  J I Cirac,et al.  Geometric Manipulation of Trapped Ions for Quantum Computation , 2001, Science.

[19]  Lian-Ao Wu,et al.  Overview of quantum memory protection and adiabaticity induction by fast signal control , 2014, 1412.1783.

[20]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[21]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[22]  A. Szameit,et al.  A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization , 2015 .

[23]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  Dieter Suter,et al.  Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. , 2012, Physical review letters.

[25]  Bei Zeng,et al.  Quantum state and process tomography via adaptive measurements , 2016, 1604.06277.

[26]  Xinhua Peng,et al.  Experimental observation of Lee-Yang zeros. , 2015, Physical review letters.

[27]  Zach DeVito,et al.  Opt , 2017 .

[28]  E. Sjoqvist,et al.  Validity of the rotating-wave approximation in nonadiabatic holonomic quantum computation , 2013, 1307.1536.

[29]  Jingfu Zhang,et al.  Experimental magic state distillation for fault-tolerant quantum computing , 2011, Nature Communications.

[30]  Erik Sjöqvist,et al.  Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems , 2016 .

[31]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[32]  G. Long Grover algorithm with zero theoretical failure rate , 2001, quant-ph/0106071.

[33]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[34]  E. Sjoqvist,et al.  Single-loop multiple-pulse nonadiabatic holonomic quantum gates , 2016, 1608.07418.

[35]  Zhang-Qi Yin,et al.  Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator , 2015, 1509.03763.

[36]  Jeeva Anandan,et al.  Non-adiabatic non-abelian geometric phase , 1988 .

[37]  Jun Li,et al.  Experimental estimation of average fidelity of a Clifford gate on a 7-qubit quantum processor. , 2014, Physical review letters.

[38]  Xue-ke Song,et al.  Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm , 2015, 1509.00097.

[39]  Fu-Guo Deng,et al.  Quantum hyperentanglement and its applications in quantum information processing. , 2016, Science bulletin.

[40]  Guang-Can Guo,et al.  Experimental demonstration of photonic quantum ratchet , 2011 .

[41]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[42]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[43]  Z. D. Wang,et al.  Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .

[44]  Jonathan A. Jones Quantum computing with NMR. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[45]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[46]  Zheng-Yuan Xue,et al.  Cavity QED implementation of non-adiabatic holonomies for universal quantum gates in decoherence-free subspaces with nitrogen-vacancy centers. , 2015, Optics express.

[47]  D. M. Tong,et al.  Fast non-Abelian geometric gates via transitionless quantum driving , 2014, Scientific Reports.

[48]  Guilu Long,et al.  Protecting geometric gates by dynamical decoupling , 2014 .

[49]  Fausto Rossi,et al.  Semiconductor-based geometrical quantum gates , 2002, quant-ph/0207019.

[50]  Li TaTsien,et al.  From phenomena of synchronization to exact synchronization and approximate synchronization for hyperbolic systems , 2016 .

[51]  Lian-Ao Wu,et al.  Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace , 2016, Scientific Reports.

[52]  Erik Sjöqvist,et al.  Geometric phases in quantum information , 2015 .

[53]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[54]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[55]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[56]  Hideo Kosaka,et al.  Optical holonomic single quantum gates with a geometric spin under a zero field , 2017 .

[57]  P. Zanardi,et al.  Quantum computation in noiseless subsystems with fast non-Abelian holonomies , 2013, 1308.1919.

[58]  Quantum simulation meets quantum biology , 2017 .

[59]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[60]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[61]  E. Knill,et al.  Liquid-state nuclear magnetic resonance as a testbed for developing quantum control methods , 2008, 0803.1982.

[62]  Z. Xue,et al.  Nonadiabatic holonomic quantum computation with all-resonant control , 2016, 1601.07219.

[63]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[64]  Guanru Feng,et al.  Experimental quantum simulation of Avian Compass in a nuclear magnetic resonance system , 2016 .

[65]  Tao Xin,et al.  Experimental demonstration of concatenated composite pulses robustness to non-static errors , 2016 .

[66]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.