Do capital breeders like Atlantic herring (Clupea harengus) exhibit sensitive periods of nutritional control on ovary development and fecundity regulation

A laboratory study was undertaken to investigate whether Northeast Atlantic herring (Clupea harengus), i.e., Norwegian spring-spawning herring, exhibit a ''sensitive period'' during the feeding season in which ovary development is particularly susceptible to food availability and (or) energy reserves. Groups of herring received similar amounts of food over the restricted summer - early autumn feeding season but the food availability was varied temporally between groups. The herring, an extreme capital breeder, did not exhibit a sensitive period, as there was no difference in fecundity or ovary maturation between groups. However, individuals that did not reach a Fulton's condition factor (K) above 0.70 during the feeding season were less likely to begin ovary maturation. Those below this threshold showing ovary development began later and had a higher intensity of atresia than fish in better condition. To maximize fecundity, females recruited signifi- cantly more oocytes than they could support through to spawning, thus the oocytes were subsequently down-regulated. Some would have skipped spawning in the coming spawning season; these fish had a very low K. Taken together, this study demonstrates that this capital breeder has developed a suite of reproductive strategies to synchronize the production of the highest number of eggs energetically possible. Resume´ : Nous avons entrepris une etude de laboratoire pour examiner si les harengs (Clupea harengus) du nord-est de l'Atlantique, c'est-a `-dire les harengs norvegiens afraie printaniere, possedent « une periode sensible » durant la saison d'alimentation pendant laquelle le developpement de l'ovaire est particulierement influencepar la disponibilitede la nour- riture et (ou) les reserves energetiques. Des groupes de harengs ont recu des quantites semblables de nourriture pendant la courte saison d'alimentation de l'eteet du debut de l'automne, mais avec des variations temporelles de disponibilitede la nourriture entre les groupes. Le hareng, qui se reproduit de facon tres marqueeapartir de ses reserves, ne possede pas de periode sensible puisqu'il n'y a pas de difference de feconditeni de maturation ovarienne entre les groupes. Cependant, les individus qui n'atteignent pas un facteur de condition de Fulton (K) superieur a ` 0,70 durant la saison d'alimentation sont moins susceptibles de commencer leur maturation ovarienne. Les poissons sous ce seuil qui affichent un developpe- ment ovarien debutent plus tard et subissent un taux plus eleved'atresie que les poissons en meilleure condition. Afin de maximiser leur fecondite ´, les femelles produisent significativement plus d'oocytes qu'elles ne peuvent rendre jusqu'ala fraie; les oocytes sont donc subsequemment reduits par controle descendant. Certains poissons qui ont un K tres faible au- raient omis la fraie durant la saison suivante de reproduction. Dans leur ensemble, nos resultats montrent que ce poisson qui se reproduit apartir de ses reserves a developpeune serie de strategies reproductives afin de synchroniser la produc- tion du plus grand nombre possible d'œufs compte tenu de l'energie disponible. (Traduit par la Redaction)

[1]  O. S. Kjesbu,et al.  Mechanisms regulating oocyte recruitment and skipped spawning in Northeast Arctic cod (Gadus morhua) , 2009 .

[2]  H. Murua,et al.  Advances in methods for determining fecundity: application of the new methods to some marine fishes , 2009 .

[3]  O. S. Kjesbu,et al.  Fecundity estimation by oocyte packing density formulae in determinate and indeterminate spawners: Theoretical considerations and applications , 2009 .

[4]  Miao Hong-cai Unbiased stereological estimation of cell number,average volume of neuronal cells in 4 months old male C57/6J mice hippocampus , 2009 .

[5]  M. Morgan,et al.  The impact of intrapopulation variability in reproductive traits on population reproductive potential of Grand Bank American plaice (Hippoglossoides platessoides) and yellowtail flounder (Limanda ferruginea) , 2008 .

[6]  R. Nash,et al.  Is fecundity in plaice (Pleuronectes platessa L.) down‐regulated in response to reduced food intake during autumn? , 2008 .

[7]  R. Nash,et al.  The concept of fecundity regulation in plaice (Pleuronectes platessa) tested on three Irish Sea spawning populations , 2007 .

[8]  K. A. Mork,et al.  Spatially structured interactions between a migratory pelagic predator, the Norwegian spring‐spawning herring Clupea harengus L., and its zooplankton prey , 2007 .

[9]  C. T. Marshall,et al.  Comparison of various potential fecundity models for north-east Arctic cod Gadus morhua, L. using oocyte diameter as a standardizing factor , 2006 .

[10]  G. Engelhard,et al.  Climate change and condition of herring (Clupea harengus) explain long-term trends in extent of skipped reproduction , 2006, Oecologia.

[11]  O. S. Kjesbu,et al.  Timing and determination of potential fecundity in Atlantic cod (Gadus morhua) , 2006 .

[12]  I. Prokopchuk,et al.  Diets of herring, mackerel, and blue whiting in the Norwegian Sea in relation to Calanus finmarchicus distribution and temperature conditions , 2006 .

[13]  C. Taggart,et al.  Fecundity variation in Icelandic summer-spawning herring and implications for reproductive potential , 2006 .

[14]  R. Nash,et al.  The origin of fulton's condition factor : Setting the record straight , 2006 .

[15]  U. Dieckmann,et al.  The logic of skipped spawning in fish , 2006 .

[16]  P. Wright,et al.  Effects of varying temperature and food availability on growth and reproduction in first‐time spawning female Atlantic cod , 2005 .

[17]  G. Engelhard,et al.  Scale analysis suggests frequent skipping of the second reproductive season in Atlantic herring , 2005, Biology Letters.

[18]  R. Rideout,et al.  Skipped spawning in female iteroparous fishes , 2005 .

[19]  Marten A. Koops,et al.  Testing hypotheses about fecundity, body size and maternal condition in fishes , 2004 .

[20]  A. Corten The role of ``conservatism'' in herring migrations , 2002, Reviews in Fish Biology and Fisheries.

[21]  O. S. Kjesbu,et al.  Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle , 2003 .

[22]  K. Holmgren Omitted spawning in compensatory‐growing perch , 2003 .

[23]  A. Slotte,et al.  Predictions of realised fecundity and spawning time in Norwegian spring-spawning herring (Clupea harengus) , 2002 .

[24]  Olav Sigurd Kjesbu,et al.  A rapid method for estimation of oocyte size and potential fecundity in Atlantic cod using a computer-aided particle analysis system , 2001 .

[25]  N. Bromage,et al.  The environmental regulation of maturation in farmed finfish with special reference to the role of photoperiod and melatonin , 2001 .

[26]  P. Ouellet,et al.  Cod egg characteristics and viability in relation to low temperature and maternal nutritional condition , 2001 .

[27]  O. S. Kjesbu,et al.  Fecundity and recruitment variability of Northeast Arctic Greenland halibut during 1980–1998, with emphasis on 1996–1998 , 2000 .

[28]  P. Dalpadado,et al.  Food and feeding conditions of Norwegian spring-spawning herring (Clupea harengus) through its feeding migrations , 2000 .

[29]  P. J. Bromley,et al.  The influence of feeding regime on sexual maturation, fecundity and atresia in first‐time spawning turbot , 2000 .

[30]  A. Slotte,et al.  Differential utilization of energy during wintering and spawning migration in Norwegian spring-spawning herring , 1999 .

[31]  O. S. Kjesbu,et al.  Temporal variations in the fecundity of Arcto-Norwegian cod (Gadus morhua) in response to natural changes in food and temperature , 1998 .

[32]  T. Jorgensen,et al.  Effects of ration on the maturation and fecundity in captive Atlantic herring (Clupea harengus) , 1998 .

[33]  A. Salvanes,et al.  Feeding, Ichthyophonus sp. infection, distribution and growth history of Norwegian spring‐spawning herring in summer , 1997 .

[34]  P. Witthames,et al.  Determinacy of fecundity and oocyte atresia in sole ( Solea solea ) from the Channel, the North Sea and the Irish Sea , 1995 .

[35]  M. Burton,et al.  A critical period for nutritional control of early gametogenesis in female winter flounder, Pleuronectes americanus (Pisces: Teleostei) , 1994 .

[36]  Olav Sigurd Kjesbu,et al.  Fecundity, Atresia, and Egg Size of Captive Atlantic Cod (Gadus morhua) in Relation to Proximate Body Composition , 1991 .

[37]  A. Rijnsdorp The mechanism of energy allocation over reproduction and somatic growth in female North Sea plaice, Pleuronectes platessa L. , 1990 .

[38]  E. Trippel,et al.  Missing opportunities to reproduce: an energy dependent or fecundity gaining strategy in white sucker (Catostomus commersoni)? , 1989 .

[39]  J. R. Brett,et al.  Maturation and Fecundity of Pacific Herring (Clupea harengus pallasi): An Experimental Study with Comparisons to Natural Populations , 1988 .

[40]  J. Jakobsson On herring migrations in relation to changes in sea temperature , 1969, Jökull.

[41]  T. B. Bagenal The Relationship Between Food Supply and Fecundity in Brown Trout Salmo trutta L. , 1969 .

[42]  T. B. Bagenal,et al.  The ecological and geographical aspects of the fecundity of the plaice , 1966, Journal of the Marine Biological Association of the United Kingdom.

[43]  E. Knut,et al.  Paris Meeting of the International Council for the Exploration of the Sea , 1923, Nature.