Pathophysiological role of histamine signaling and its implications in glioblastoma.

[1]  Chao Wan,et al.  The association between the neuroendocrine system and the tumor immune microenvironment: Emerging directions for cancer immunotherapy. , 2023, Biochimica et biophysica acta. Reviews on cancer.

[2]  Yi Wang,et al.  The blood–brain barrier: Structure, regulation and drug delivery , 2023, Signal transduction and targeted therapy.

[3]  M. J. van den Bent,et al.  Transcriptome analysis reveals tumor microenvironment changes in glioblastoma. , 2023, Cancer cell.

[4]  Zhen Pan,et al.  Ebastine exerts antitumor activity and induces autophagy by activating AMPK/ULK1 signaling in an IPMK-dependent manner in osteosarcoma , 2023, International journal of biological sciences.

[5]  Lucy F. Stead,et al.  GBMdeconvoluteR accurately infers proportions of neoplastic and immune cell populations from bulk glioblastoma transcriptomics data , 2022, bioRxiv.

[6]  I. Fournier,et al.  Challenges in glioblastoma research: focus on the tumor microenvironment. , 2022, Trends in cancer.

[7]  J. Chen,et al.  Glioblastoma stem cell-specific histamine secretion drives pro-angiogenic tumor microenvironment remodeling. , 2022, Cell stem cell.

[8]  D. Hanahan,et al.  Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity , 2022, Cancer cell.

[9]  A. Reda,et al.  Anti-neoplastic action of Cimetidine/Vitamin C on histamine and the PI3K/AKT/mTOR pathway in Ehrlich breast cancer , 2022, Scientific Reports.

[10]  Liang Rong,et al.  Emerging therapies for glioblastoma: current state and future directions , 2022, Journal of Experimental & Clinical Cancer Research.

[11]  Yuan Zhang,et al.  The allergy mediator histamine confers resistanceto immunotherapy in cancer patients via activationof the macrophage histamine receptor H1. , 2021, Cancer cell.

[12]  T. Batchelor,et al.  Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system , 2021, Cancer.

[13]  V. Medina,et al.  Histamine in cancer immunology and immunotherapy. Current status and new perspectives , 2021, Pharmacology research & perspectives.

[14]  J. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. , 2021, Neuro-oncology.

[15]  Suxia Han,et al.  Promethazine inhibits proliferation and promotes apoptosis in colorectal cancer cells by suppressing the PI3K/AKT pathway. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[16]  Shu-Fen Wu,et al.  Cyproheptadine, an epigenetic modifier, exhibits anti-tumor activity by reversing the epigenetic silencing of IRF6 in urothelial carcinoma , 2021, Cancer cell international.

[17]  K. Aldape,et al.  TNFα secreted by glioma associated macrophages promotes endothelial activation and resistance against anti-angiogenic therapy , 2021, Acta neuropathologica communications.

[18]  V. Sahinturk,et al.  Cyproheptadine causes apoptosis and decreases inflammation by disrupting thiol/disulfide balance and enhancing the levels of SIRT1 in C6 glioblastoma cells. , 2021, Toxicology in vitro : an international journal published in association with BIBRA.

[19]  Qing‐Yu He,et al.  Anti-allergic drug azelastine suppresses colon tumorigenesis by directly targeting ARF1 to inhibit IQGAP1-ERK-Drp1-mediated mitochondrial fission , 2021, Theranostics.

[20]  H. Wakimoto,et al.  Modification of Extracellular Matrix Enhances Oncolytic Adenovirus Immunotherapy in Glioblastoma , 2020, Clinical Cancer Research.

[21]  Yan-Yan Zhao,et al.  Inhibition of histamine receptor H3 suppresses the growth and metastasis of human non-small cell lung cancer cells via inhibiting PI3K/Akt/mTOR and MEK/ERK signaling pathways and blocking EMT , 2020, Acta Pharmacologica Sinica.

[22]  Jenny C. Chang,et al.  Antihistamine Drug Ebastine Inhibits Cancer Growth by Targeting Polycomb Group Protein EZH2 , 2020, Molecular Cancer Therapeutics.

[23]  T. Yoshikawa,et al.  Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness , 2020, British journal of pharmacology.

[24]  Chaohua Zhang,et al.  Desloratadine, a Novel Antigrowth Reagent for Bladder Cancer , 2020, Technology in cancer research & treatment.

[25]  I. Tirosh,et al.  Tackling the Many Facets of Glioblastoma Heterogeneity. , 2020, Cell stem cell.

[26]  J. Rich,et al.  Glioblastoma Stem Cells: Driving Resilience through Chaos. , 2020, Trends in cancer.

[27]  Y. Okada,et al.  HYBID (alias KIAA1199/CEMIP) and hyaluronan synthase coordinately regulate hyaluronan metabolism in histamine-stimulated skin fibroblasts , 2020, The Journal of Biological Chemistry.

[28]  Madeline G. Andrews,et al.  Outer Radial Glia-like Cancer Stem Cells Contribute to Heterogeneity of Glioblastoma. , 2020, Cell stem cell.

[29]  Zev A. Binder,et al.  A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity , 2019, Cell.

[30]  J. Götz,et al.  The blood-brain barrier: Physiology and strategies for drug delivery. , 2019, Advanced drug delivery reviews.

[31]  J. Zhao,et al.  Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma , 2019, Oncogene.

[32]  G. Reifenberger,et al.  Molecular targeted therapy of glioblastoma. , 2019, Cancer treatment reviews.

[33]  M. Weller,et al.  Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization , 2019, EMBO molecular medicine.

[34]  Yuhong Wang,et al.  Upregulated histamine receptor H3 promotes tumor growth and metastasis in hepatocellular carcinoma. , 2019, Oncology reports.

[35]  T. Yoshikawa,et al.  Histamine N-Methyltransferase in the Brain , 2019, International journal of molecular sciences.

[36]  E. Tiligada,et al.  Histamine pharmacology: from Sir Henry Dale to the 21st century , 2018, British journal of pharmacology.

[37]  I. Sardi,et al.  Glioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier , 2018, International journal of molecular sciences.

[38]  F. S. Yoshikawa,et al.  Role of Histamine in Modulating the Immune Response and Inflammation , 2018, Mediators of inflammation.

[39]  Xiao-yong Hu,et al.  Inhibition of histamine receptor H3R suppresses prostate cancer growth, invasion and increases apoptosis via the AR pathway , 2018, Oncology letters.

[40]  B. Nahed,et al.  Sequestration of T-cells in bone marrow in the setting of glioblastoma and other intracranial tumors , 2018, Nature Medicine.

[41]  M. Mancino,et al.  Histamine receptor 1 inhibition enhances antitumor therapeutic responses through extracellular signal-regulated kinase (ERK) activation in breast cancer. , 2018, Cancer letters.

[42]  G. Alpini,et al.  Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2–/– mice and human cholangiocarcinoma tumorigenesis , 2018, Hepatology.

[43]  Leland S. Hu,et al.  Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data , 2018, Neuro-oncology.

[44]  H. Nijhout,et al.  A mathematical model for histamine synthesis, release, and control in varicosities , 2017, Theoretical Biology and Medical Modelling.

[45]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[46]  Paweena Dana,et al.  Repurposing cimetidine for cholangiocarcinoma: Antitumor effects in vitro and in vivo. , 2017, Oncology letters.

[47]  M. Sakaguchi,et al.  Histamine H3 receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines. , 2016, Biochemical and biophysical research communications.

[48]  Thomas C. Chen,et al.  Tumor vasculature and glioma stem cells: Contributions to glioma progression. , 2016, Cancer letters.

[49]  S. Lakhani,et al.  SASH1 mediates sensitivity of breast cancer cells to chloropyramine and is associated with prognosis in breast cancer , 2016, Oncotarget.

[50]  D. Jurič,et al.  Histamine and astrocyte function. , 2016, Pharmacological research.

[51]  C. Wirtz,et al.  Immune phenotypes predict survival in patients with glioblastoma multiforme , 2016, Journal of Hematology & Oncology.

[52]  H. Haas,et al.  International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors , 2015, Pharmacological Reviews.

[53]  Voichita D. Marinescu,et al.  Glioma-derived plasminogen activator inhibitor-1 (PAI-1) regulates the recruitment of LRP1 positive mast cells , 2015, Oncotarget.

[54]  T. Zhao,et al.  Inhibition of histamine receptor 3 suppresses glioblastoma tumor growth, invasion, and epithelial-to-mesenchymal transition , 2015, Oncotarget.

[55]  M. Seike,et al.  Histamine suppresses regulatory T cells mediated by TGF‐β in murine chronic allergic contact dermatitis , 2015, Experimental dermatology.

[56]  J. Jhamandas,et al.  Histamine induces the production of matrix metalloproteinase-9 in human astrocytic cultures via H1-receptor subtype , 2015, Brain Structure and Function.

[57]  William A. Flavahan,et al.  Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumor-associated Macrophages and Promotes Malignant Growth , 2014, Nature Cell Biology.

[58]  T. Naka,et al.  Histamine contributes to tissue remodeling via periostin expression. , 2014, The Journal of investigative dermatology.

[59]  Jill S. Barnholtz-Sloan,et al.  Epidemiologic and Molecular Prognostic Review of Glioblastoma , 2014, Cancer Epidemiology, Biomarkers & Prevention.

[60]  J. Ryu,et al.  Clobenpropit enhances anti-tumor effect of gemcitabine in pancreatic cancer. , 2014, World journal of gastroenterology.

[61]  D. Conrad,et al.  Mast cell histamine promotes the immunoregulatory activity of myeloid‐derived suppressor cells , 2014, Journal of leukocyte biology.

[62]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[63]  J. Meng,et al.  Activation of histamine H4 receptors decreases epithelial-to-mesenchymal transition progress by inhibiting transforming growth factor-β1 signalling pathway in non-small cell lung cancer. , 2014, European journal of cancer.

[64]  Heikki Joensuu,et al.  Novel Target for Peptide-Based Imaging and Treatment of Brain Tumors , 2014, Molecular Cancer Therapeutics.

[65]  G. Nilsson,et al.  Glioma‐derived macrophage migration inhibitory factor (MIF) promotes mast cell recruitment in a STAT5‐dependent manner , 2014, Molecular oncology.

[66]  L. Deangelis,et al.  Glioblastoma and other malignant gliomas: a clinical review. , 2013, JAMA.

[67]  H. Seol,et al.  A practical scoring system to determine whether to proceed with surgical resection in recurrent glioblastoma. , 2013, Neuro-oncology.

[68]  H. Sasano,et al.  Molecular mechanism of histamine clearance by primary human astrocytes , 2013, Glia.

[69]  R. McLendon,et al.  Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth , 2013, Cell.

[70]  T. Kuroishi,et al.  Histamine reduces susceptibility to natural killer cells via down‐regulation of NKG2D ligands on human monocytic leukaemia THP‐1 cells , 2012, Immunology.

[71]  S. Takano Glioblastoma angiogenesis: VEGF resistance solutions and new strategies based on molecular mechanisms of tumor vessel formation , 2012, Brain Tumor Pathology.

[72]  C. Akdis,et al.  Regulation of the immune response and inflammation by histamine and histamine receptors. , 2011, The Journal of allergy and clinical immunology.

[73]  F. Meng,et al.  The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis , 2011, Hepatology.

[74]  H. Stark,et al.  The histamine H₄ receptor: targeting inflammatory disorders. , 2011, European journal of pharmacology.

[75]  I. Alafuzoff,et al.  Mast Cell Accumulation in Glioblastoma with a Potential Role for Stem Cell Factor and Chemokine CXCL12 , 2011, PloS one.

[76]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[77]  E. Chiocca,et al.  Allergy and inflammatory transcriptome is predominantly negatively correlated with CD133 expression in glioblastoma. , 2010, Neuro-oncology.

[78]  Miao Yu,et al.  Cimetidine induces apoptosis in gastric cancer cells in vitro and inhibits tumor growth in vivo. , 2010, Oncology reports.

[79]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[80]  C. Akdis,et al.  Histamine, histamine receptors and their role in immune pathology , 2009, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[81]  E. Castigli,et al.  Histamine hyperpolarizes human glioblastoma cells by activating the intermediate-conductance Ca2+-activated K+ channel. , 2009, American journal of physiology. Cell physiology.

[82]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[83]  S. Bao,et al.  The multifaceted role of periostin in tumorigenesis , 2009, Cellular and Molecular Life Sciences.

[84]  Srinivas Nagaraj,et al.  Myeloid-derived suppressor cells as regulators of the immune system , 2009, Nature Reviews Immunology.

[85]  K. Kusama,et al.  Cimetidine inhibits salivary gland tumor cell adhesion to neural cells and induces apoptosis by blocking NCAM expression , 2008, BMC Cancer.

[86]  H. Haas,et al.  Histamine in the nervous system. , 2008, Physiological reviews.

[87]  K. Aldape,et al.  Long-term Anti-inflammatory and Antihistamine Medication Use and Adult Glioma Risk , 2008, Cancer Epidemiology Biomarkers & Prevention.

[88]  E. Linos,et al.  Atopy and risk of brain tumors: a meta-analysis. , 2007, Journal of the National Cancer Institute.

[89]  J. Zachary,et al.  Central histamine H3 receptor signaling negatively regulates susceptibility to autoimmune inflammatory disease of the CNS , 2007, Proceedings of the National Academy of Sciences.

[90]  A. Swerdlow,et al.  History of allergies and risk of glioma in adults , 2006, International journal of cancer.

[91]  K. Uematsu,et al.  Prognostic value of expression of vascular endothelial growth factor and its flt-1 and KDR receptors in stage I non-small-cell lung cancer. , 2006, Lung cancer.

[92]  R. Thurmond,et al.  The Histamine H4 Receptor Mediates Allergic Airway Inflammation by Regulating the Activation of CD4+ T Cells , 2006, The Journal of Immunology.

[93]  R. Kiss,et al.  Cimetidine, an unexpected anti-tumor agent, and its potential for the treatment of glioblastoma (review). , 2006, International journal of oncology.

[94]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[95]  C. Ganellin,et al.  Histamine and its receptors , 2006, British journal of pharmacology.

[96]  R. Benamouzig,et al.  Microvessel density and VEGF expression are prognostic factors in colorectal cancer. Meta-analysis of the literature , 2005, British Journal of Cancer.

[97]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[98]  S. Patchett,et al.  The Effect of H2 Antagonists on Proliferation and Apoptosis in Human Colorectal Cancer Cell Lines , 2004, Digestive Diseases and Sciences.

[99]  M. Moghadassi,et al.  Case-control study of use of nonsteroidal antiinflammatory drugs and glioblastoma multiforme. , 2004, American journal of epidemiology.

[100]  A. Togias H1-receptors: localization and role in airway physiology and in immune functions. , 2003, The Journal of allergy and clinical immunology.

[101]  D. Waisman,et al.  Exploitation of Astrocytes by Glioma Cells to Facilitate Invasiveness: A Mechanism Involving Matrix Metalloproteinase-2 and the Urokinase-Type Plasminogen Activator–Plasmin Cascade , 2003, The Journal of Neuroscience.

[102]  H. Haas,et al.  The role of histamine and the tuberomamillary nucleus in the nervous system , 2003, Nature Reviews Neuroscience.

[103]  F. Di Virgilio,et al.  Expression and function of histamine receptors in human monocyte-derived dendritic cells. , 2002, The Journal of allergy and clinical immunology.

[104]  R. Steinman,et al.  Dendritic Cells Specialized and Regulated Antigen Processing Machines , 2001, Cell.

[105]  T. H. van der Kwast,et al.  High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer. , 2001, Cancer research.

[106]  K. Tanaka,et al.  Molecular cloning and characterization of a new human histamine receptor, HH4R. , 2000, Biochemical and biophysical research communications.

[107]  V. László,et al.  Histidine decarboxylase expression in human melanoma. , 2000, The Journal of investigative dermatology.

[108]  P. Welker,et al.  Inhibition of cytokine secretion from human leukemic mast cells and basophils by H1‐ and H2‐receptor antagonists , 2000, Experimental dermatology.

[109]  G. Giles,et al.  Role of medical history in brain tumour development. Results from the international adult brain tumour study , 1999, International journal of cancer.

[110]  H. Haas,et al.  Histaminergic System in Co‐cultures of Hippocampus and Posterior Hypothalamus: A Morphological and Electrophysiological Study in the Rat , 1997, The European journal of neuroscience.

[111]  H. Haas,et al.  International Union of Pharmacology. XIII. Classification of histamine receptors. , 1997, Pharmacological reviews.

[112]  L. Twiggs,et al.  Vascular endothelial growth factor expression in early stage ovarian carcinoma , 1997, Cancer.

[113]  R. Edwards,et al.  Transport of histamine by vesicular monoamine transporter-2 , 1995, Neuropharmacology.

[114]  W. Fogel,et al.  Brain Histamine in Rats with Hepatic Encephalopathy , 1991, Journal of neurochemistry.

[115]  W. Risau,et al.  Development of the blood-brain barrier , 1990, Trends in Neurosciences.

[116]  E. Orr,et al.  The Significance of Mast Cells as a Source of Histamine in the Mouse Brain , 1984, Journal of neurochemistry.

[117]  K. Dismukes,et al.  Histamine turnover in rat brain. , 1974, Brain research.

[118]  H. Wakimoto,et al.  Extracellular matrix in glioblastoma: opportunities for emerging therapeutic approaches. , 2021, American journal of cancer research.

[119]  Christopher P. Johnson,et al.  Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor-Dependent Signaling. , 2016, The American journal of pathology.

[120]  Michael Weller,et al.  Standards of care for treatment of recurrent glioblastoma--are we there yet? , 2013, Neuro-oncology.

[121]  E. Nakamura,et al.  Histamine regulates growth of malignant melanoma implants via H2 receptors in mice , 2006, InflammoPharmacology.

[122]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[123]  M. Makuuchi,et al.  Cimetidine inhibits angiogenesis and suppresses tumor growth. , 2005, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[124]  Kazuki Izumi,et al.  Roxatidine- and cimetidine-induced angiogenesis inhibition suppresses growth of colon cancer implants in syngeneic mice. , 2003, Journal of pharmacological sciences.

[125]  J. J. Dropp Mast cells in the human brain. , 1979, Acta anatomica.