A comprehensive review of the models on the nanostructure of calcium silicate hydrates

[1]  T. L. Brownyard,et al.  Studies of the Physical Properties of Hardened Portland Cement Paste , 1946 .

[2]  H. Taylor 726. Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures , 1950 .

[3]  J. D. Bernal,et al.  Crystallographic research on the hydration of Portland cement. A first report on investigations in progress , 1952 .

[4]  H. Taylor Relationships Between Calcium Silicates and Clay Minerals , 1956 .

[5]  S. Brunauer,et al.  DEVELOPMENT OF SURFACE IN THE HYDRATION OF CALCIUM SILICATES. II. EXTENSION OF INVESTIGATIONS TO EARLIER AND LATER STAGES OF HYDRATION , 1962 .

[6]  H. Taylor THE CHEMISTRY OF CEMENT HYDRATION , 1963 .

[7]  A. B. Carpenter,et al.  Jennite, a new mineral , 1966 .

[8]  S. Brunauer,et al.  Some remarks about capillary condensation and pore structure analysis , 1967 .

[9]  R. Feldman,et al.  A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties , 1968 .

[10]  A. Neville Properties of Concrete , 1968 .

[11]  R. Feldman ASSESSMENT OF EXPERIMENTAL EVIDENCE FOR MODELS OF HYDRATED PORTLAND CEMENT , 1971 .

[12]  R. Feldman,et al.  DENSITY AND POROSITY STUDIES OF HYDRATED PORTLAND CEMENT , 1972 .

[13]  R. Feldman Mechanism of creep of hydrated portland cement paste , 1972 .

[14]  R. Feldman Helium flow and density measurement of the hydrated tricalcium silicate - water system , 1972 .

[15]  H. Taylor,et al.  Calcium silicate hydrate (II) (“C-S-H(II)”) , 1976 .

[16]  M. Daimon,et al.  Pore Structure of Calcium Silicate Hydrate in Hydrated Tricalcium Silicate , 1977 .

[17]  H. Stade Zum Aufbau Schlecht geordneter Calciumhydrogensilicate. II. Über eine aus Poly‐ und Disilicat bestehende Phase , 1980 .

[18]  R. Feldman Application of the helium inflow technique for measuring surface area and hydraulic radius of hydrated portland cement , 1980 .

[19]  H. Stade,et al.  Zum Aufbau schlecht geordneter Calciumhydrogensilicate. I. Bildung und Eigenschaften einer schlecht geordneten Calciumhydrogendisilicatphase , 1980 .

[20]  H. Stade,et al.  STRUCTURE OF ILL-CRYSTALLIZED CALCIUM HYDROGEN SILICATES. I. FORMATION AND PROPERTIES OF AN ILL-CRYSTALLIZED CALCIUM HYDROGEN DISILICATE PHASE , 1980 .

[21]  S. A. Hamid The crystal structure of the 11Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O , 1981 .

[22]  H. Stade,et al.  Zum Aufbau schlecht geordneter Calciumhydrogensilicate. IV. Anionenzusammensetzung der Hydratationsprodukte des Tricalciumsilicats , 1983 .

[23]  H. Taylor Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .

[24]  H. Stade,et al.  On the coordination of Al in ill-crystallized C-S-H phases formed by hydration of tricalcium silicate and by precipitation reactions at ambient temperature , 1987 .

[25]  A. Allen,et al.  Development of the fine porosity and gel structure of hydrating cement systems , 1987 .

[26]  Donald E. Macphee,et al.  Compositional Model for Calcium Silicate Hydrate (C-S-H) Gels, Their Solubilities, and Free Energies of Formation , 1987 .

[27]  S. Popovics CONCRETE MATERIALS. PROPERTIES, SPECIFICATIONS AND TESTING. SECOND EDITION , 1992 .

[28]  Sandor Popovics,et al.  Concrete Materials: Properties, Specifications, and Testing , 1992 .

[29]  I. Richardson,et al.  Models for the composition and structure of calcium silicate hydrate (CSH) gel in hardened tricalcium silicate pastes , 1992 .

[30]  Fredrik P. Glasser,et al.  A thermodynamic model for blended cements. II: Cement hydrate phases; thermodynamic values and modelling studies , 1992 .

[31]  C. Dobson,et al.  Location of Aluminum in Substituted Calcium Silicate Hydrate (C‐S‐H) Gels as Determined by 29Si and 27Al NMR and EELS , 1993 .

[32]  H. Taylor Nanostructure of C?S?H: Current status , 1993 .

[33]  I. Richardson,et al.  The incorporation of minor and trace elements into calcium silicate hydrate (CSH) gel in hardened cement pastes , 1993 .

[34]  I. Richardson,et al.  Microstructure and microanalysis of hardened ordinary Portland cement pastes , 1993 .

[35]  H. Taylor A discussion of the papers “Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes” and “The incorporation of minor and trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes” , 1993 .

[36]  X. Cong,et al.  29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates , 1996 .

[37]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[38]  Xu,et al.  Observation of a Mesostructure in Calcium Silicate Hydrate Gels of Portland Cement. , 1996, Physical review letters.

[39]  Zhengkui Xu,et al.  Mesostructure of calcium silicate hydrate (C-S-H) gels in Portland cement paste : Short-range ordering, nanocrystallinity, and local compositional order , 1997 .

[40]  X. Cong,et al.  Raman spectroscopy of C-S-H, tobermorite, and jennite , 1997 .

[41]  A. Nonat,et al.  The Structure, Stoichiometry and Properties of C-S-H Prepared by C3S Hydration Under Controlled Condition , 1998 .

[42]  P. Colombet,et al.  Nuclear magnetic resonance spectroscopy of cement-based materials , 1998 .

[43]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[44]  H. Jennings,et al.  A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .

[45]  S. Merlino,et al.  The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications , 2001 .

[46]  Jeffrey J. Thomas,et al.  Effect of Heat Treatment on the Pore Structure and Drying Shrinkage Behavior of Hydrated Cement Paste , 2002 .

[47]  G. Constantinides The elastic properties of calcium leached cement pastes and mortars : a multi-scale investigation , 2002 .

[48]  H. Brouwers Chemical Reactions in hydrated Ordinary Portland Cement based on the work by Powers and Brownyard , 2003 .

[49]  V. K. Peterson,et al.  Diffraction investigations of cement clinker and tricalcium silicate using Rietveld analysis , 2003 .

[50]  H. Taylor,et al.  Solubility and structure of calcium silicate hydrate , 2004 .

[51]  E. Lesniewska,et al.  Investigation of the surface structure and elastic properties of calcium silicate hydrates at the nanoscale. , 2004, Ultramicroscopy.

[52]  H. Taylor,et al.  The crystal structure of jennite, Ca9Si6O18(OH)6·8H2O , 2004 .

[53]  Hui Li,et al.  A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials , 2004 .

[54]  H. Damme,et al.  Microscopic physical basis of the poromechanical behavior of cement-based materials , 2004 .

[55]  H. Jennings Colloid model of C−S−H and implications to the problem of creep and shrinkage , 2004 .

[56]  Aleksandar Matic,et al.  Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement , 2004 .

[57]  F. Ulm,et al.  The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling , 2004 .

[58]  K. Scrivener,et al.  Quantitative study of Portland cement hydration by X-ray diffraction/rietveld analysis and independent methods , 2004 .

[59]  Hjh Jos Brouwers,et al.  The work of Powers and Brownyard revisited: Part 1 , 2004 .

[60]  A. Nonat THE STRUCTURE AND STOICHIOMETRY OF C-S-H , 2004 .

[61]  Hjh Jos Brouwers,et al.  The work of Powers and Brownyard revisited: Part 2 , 2005 .

[62]  Jeffrey J. Thomas,et al.  Analysis of C–S–H gel and cement paste by small-angle neutron scattering , 2005 .

[63]  Stefano Merlino,et al.  The Crystal Structure of Tobermorite 14 Å (Plombierite), a C–S–H Phase , 2005 .

[64]  Jeffrey J. Thomas,et al.  A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste , 2006 .

[65]  Jong-Shin Huang,et al.  Effects of organo-modified montmorillonite on strengths and permeability of cement mortars , 2006 .

[66]  Zhenhua Li,et al.  Investigations on the preparation and mechanical properties of the nano-alumina reinforced cement composite , 2006 .

[67]  Tianhe Yang AFM study of the interactions between moisture and the surface of cementitious materials , 2006 .

[68]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[69]  Matthew J. DeJong,et al.  The nanogranular behavior of C-S-H at elevated temperatures (up to 700 °C) , 2007 .

[70]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[71]  M. Griebel,et al.  A Molecular Dynamic Study of Cementitious Calcium Silicate Hydrate (C–S–H) Gels , 2007 .

[72]  Jeffrey J. Thomas,et al.  A multi-technique investigation of the nanoporosity of cement paste , 2007 .

[73]  Jeng-Ywan Shih,et al.  Material properties of portland cement paste with nano-montmorillonite , 2007 .

[74]  D. Sánchez-Portal,et al.  Silicate chain formation in the nanostructure of cement-based materials. , 2007, The Journal of chemical physics.

[75]  H. Manzano,et al.  On the formation of cementitious C–S–H nanoparticles , 2007 .

[76]  Hamlin M. Jennings,et al.  Refinements to colloid model of C-S-H in cement: CM-II , 2008 .

[77]  Roland J.-M. Pellenq,et al.  Engineering the bonding scheme in C–S–H: The iono-covalent framework , 2008 .

[78]  P. Mondal Nanomechanical properties of cementitious materials , 2008 .

[79]  Mette Rica Geiker,et al.  Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates , 2008 .

[80]  Jeffrey W. Bullard,et al.  Characterization and Modeling of Pores and Surfaces in Cement Paste , 2008 .

[81]  H. Jennings,et al.  Does C–S–H particle shape matter? A discussion of the paper ‘Modelling elasticity of a hydrating cement paste’, by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427–1439 , 2008 .

[82]  I. Richardson The calcium silicate hydrates , 2008 .

[83]  Karen L. Scrivener,et al.  Innovation in use and research on cementitious material , 2008 .

[84]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[85]  James J. Beaudoin,et al.  Nanotechnology Applications for Sustainable Cement-Based Products , 2009 .

[86]  R. Selvam,et al.  Potential Application of Nanotechnology on Cement Based Materials , 2009 .

[87]  Itai Panas,et al.  Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques , 2009 .

[88]  P. Baglioni,et al.  Water confined in cement pastes as a probe of cement microstructure evolution. , 2009, The journal of physical chemistry. B.

[89]  R. Alizadeh Nanostructure and engineering properties of basic and modified calcium-silicate-hydrate systems , 2009 .

[90]  James Beaudoin,et al.  Cement and Concrete Nanoscience and Nanotechnology , 2010, Materials.

[91]  Bo Yeon Lee,et al.  Influence of TiO2 Nanoparticles on Early C3S Hydration , 2009, SP-267: Nanotechnology of Concrete: The Next Big Thing is Small.

[92]  Gilles Chanvillard,et al.  A Coupled Nanoindentation/SEM‐EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C–S–H/Ca(OH)2 Nanocomposites , 2010 .

[93]  P. Monteiro,et al.  Nanostructure of calcium silicate hydrates in cements. , 2010, Physical review letters.

[94]  Florence Sanchez,et al.  Nanotechnology in concrete – A review , 2010 .

[95]  James J. Beaudoin,et al.  Dimensional change and elastic behavior of layered silicates and Portland cement paste , 2010 .

[96]  Jorge S. Dolado,et al.  Modelos estructurales del empaquetamiento aleatorio de partículas esféricas de Tobermorita: una aproximación computacional sencilla , 2010 .

[97]  Franz-Josef Ulm,et al.  Nanogranular packing of C–S–H at substochiometric conditions , 2010 .

[98]  J. Beaudoin,et al.  Viscoelastic nature of calcium silicate hydrate , 2010 .

[99]  P. Baglioni,et al.  Cement: a two thousand year old nano-colloid. , 2011, Journal of colloid and interface science.

[100]  J. Dolado,et al.  Effect of hydration on the dielectric properties of C-S-H gel. , 2011, The Journal of chemical physics.

[101]  J. Beaudoin,et al.  Mechanical properties of calcium silicate hydrates , 2011 .

[102]  Z. Stachurski On Structure and Properties of Amorphous Materials , 2011, Materials.

[103]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[104]  B. Lothenbach,et al.  Supplementary cementitious materials , 2011 .

[105]  M. Griebel,et al.  The nano-branched structure of cementitious calcium–silicate–hydrate gel , 2011 .

[106]  P. Monteiro,et al.  Rietveld refinement of the structures of 1.0 C-S-H and 1.5 C-S-H , 2012 .

[107]  F. Ulm Nano-Engineering of Concrete , 2012 .

[108]  A. Ayuela,et al.  29Si NMR in Cement: A Theoretical Study on Calcium Silicate Hydrates , 2012 .

[109]  A. Soin,et al.  A combined QXRD/TG method to quantify the phase composition of hydrated Portland cements , 2013 .

[110]  André Nonat,et al.  The di- and tricalcium silicate dissolutions , 2013 .

[111]  William Jason Weiss,et al.  Atomic force and lateral force microscopy (AFM and LFM) examinations of cement and cement hydration products , 2013 .

[112]  E. Sarris,et al.  Finite element modeling of nanoindentation on C–S–H: Effect of pile-up and contact friction , 2013 .

[113]  Surendra P. Shah,et al.  Modification of cement-based materials with nanoparticles , 2013 .

[114]  J. Beaudoin,et al.  Microindentation creep of secondary hydrated cement phases and C–S–H , 2013 .

[115]  K. Paine,et al.  The effect of the addition of nanoparticles of silica on the strength and microstructure of blended Portland cement pastes , 2014 .

[116]  P. Pourbeik,et al.  Microindentation creep of monophasic calcium–silicate–hydrates , 2014 .

[117]  Alaa M. Rashad,et al.  A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash , 2014 .

[118]  K. Paine,et al.  Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systems , 2015 .