Topological characteristics of random triangulated surfaces

We consider the topological characteristics of orientable surfaces generated by randomly gluing n triangles together. Our results are most conveniently expressed in terms of a parameter h = n / 2 + χ, where χ is the Euler characteristic of the surface. Simulations and results for similar models suggest that Ex [h] = log(3n) + γ + o(1) and Var [h] = log(3n) + γ - π2 / 6 + o(1). We prove that Ex [h] = log n + O(1) and Var [h] = O(log n). We also derive results concerning a number of other topological invariants and combinatorial characteristics of these random surfaces. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006

[1]  K. Mclaughlin,et al.  Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration , 2002, math-ph/0211022.

[2]  S. Carlip Dominant topologies in Euclidean quantum gravity , 1997, gr-qc/9710114.

[3]  B. Sagan The Symmetric Group , 2001 .

[4]  T. Regge General relativity without coordinates , 1961 .

[5]  L. Heffter Ueber das Problem der Nachbargebiete , 1891 .

[6]  D. Jackson Counting cycles in permutations by group characters, with an application to a topological problem , 1987 .

[7]  J. Hartle Unruly topologies in two-dimensional quantum gravity , 1985 .

[8]  Bruce E. Sagan,et al.  The symmetric group - representations, combinatorial algorithms, and symmetric functions , 2001, Wadsworth & Brooks / Cole mathematics series.

[9]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[10]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[11]  G. Hooft A Planar Diagram Theory for Strong Interactions , 1974 .

[12]  Robert C. Penner,et al.  Perturbative series and the moduli space of Riemann surfaces , 1988 .

[13]  I. Gessel,et al.  A Combinatorial Interpretation of the Numbers 6 (2n)! =n! (n + 2)! , 2004 .

[14]  J. Harer,et al.  A geometric parametrization for the virtual Euler characteristics of the moduli spaces of real and complex algebraic curves , 1999 .

[15]  S. Hawking,et al.  Space-Time Foam , 1979 .

[16]  Wolfgang Haken,et al.  On Recursively Unsolvable Problems in Topology and Their Classification , 1968 .

[17]  Generalized sums over histories for quantum gravity (II). Simplicial conifolds , 1993, gr-qc/9307019.

[18]  C. Itzykson,et al.  Matrix integration and combinatorics of modular groups , 1990 .

[19]  David J. Gross,et al.  A Nonperturbative Treatment of Two-dimensional Quantum Gravity , 1990 .

[20]  Don Zagier On the distribution of the number of cycles of elements in symmetric groups , 1995 .

[21]  Michael R. Douglas,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[22]  P. Di Francesco,et al.  2D gravity and random matrices , 1993 .

[23]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[24]  A two-dimensional model for mesons , 1974 .

[25]  J. Harer,et al.  The Euler characteristic of the moduli space of curves , 1986 .

[26]  Ira M. Gessel,et al.  Super Ballot Numbers , 1992, J. Symb. Comput..

[27]  Frank Harary,et al.  Graph Theory , 2016 .

[28]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.