Statistics of Poincar recurrences for a class of smooth circle maps

Statistics of Poincare recurrence for a class of circle maps, including sub-critical, critical, and super-critical cases, are studied. It is shown how the topological differences in the various types of the dynamics are manifested in the statistics of the return times.

[1]  Giorgio Turchetti,et al.  Weak chaos and Poincaré recurrences for area preserving maps , 2003 .

[2]  B. Chirikov,et al.  Asymptotic Statistics of Poincaré Recurrences in Hamiltonian Systems with Divided Phase Space , 1999 .

[3]  R. Pérez,et al.  Fine Structure of Phase Locking , 1982 .

[4]  O. Piro,et al.  On Modular Smoothing and Scaling Functions for Mode Locking , 1992 .

[5]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[6]  Z. Coelho,et al.  Limit laws of entrance times for homeomorphisms of the circle , 1996 .

[7]  Sandro Vaienti,et al.  Statistics of Return Times:¶A General Framework and New Applications , 1999 .

[8]  Philip Boyland,et al.  Bifurcations of circle maps: Arnol'd tongues, bistability and rotation intervals , 1986 .

[9]  Benjamin Weiss,et al.  Entropy and data compression schemes , 1993, IEEE Trans. Inf. Theory.

[10]  L. Young Recurrence times and rates of mixing , 1999 .

[11]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[12]  Universal estimates for critical circle mappings. , 1991, Chaos.

[13]  A. J. Sarantakis,et al.  Entropy and data compression , 1970 .

[14]  Tomas Bohr,et al.  Transition to chaos by interaction of resonances in dissipative systems. I: Circle maps , 1984 .

[15]  D. Mayer On the distribution of recurrence times in nonlinear systems , 1988 .

[16]  Sandro Vaienti,et al.  Multifractal properties of return time statistics. , 2001, Physical review letters.

[17]  G. Zaslavsky,et al.  Weak mixing and anomalous kinetics along filamented surfaces. , 2001, Chaos.

[18]  N. Buric,et al.  Universal scaling of critical quasiperiodic orbits in a class of twist maps , 1998 .

[19]  C. Tresser,et al.  A Farey tree organization of locking regions for simple circle maps , 1996 .

[20]  Theo Geisel,et al.  Onset of Diffusion and Universal Scaling in Chaotic Systems , 1982 .

[21]  Fractal properties of critical invariant curves , 1996 .

[22]  N. B. Slater,et al.  Gaps and steps for the sequence nθ mod 1 , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  J. Sethna,et al.  Universal Transition from Quasiperiodicity to Chaos in Dissipative Systems , 1982 .

[24]  Tomas Bohr,et al.  Scaling for supercritical circle-maps: Numerical investigation of the onset of bistability and period doubling , 1985 .

[25]  R. MacKay,et al.  Transition to topological chaos for circle maps , 1996 .

[26]  A. Denjoy,et al.  Sur les courbes définies par les équations différentielles à la surface du tore , 1932 .