A tensor—vector—scalar framework for modified dynamics and cosmic dark matter

I describe a tensor-vector-scalar theory that reconciles the galaxy-scale success of modified Newtonian dynamics (MOND) with the cosmological scale evidence for cold dark matter (CDM). The theory provides a cosmological basis for MOND in the sense that the predicted phenomenology only arises in a cosmological background. The theory contains an evolving effective potential, and scalar field oscillations in this potential comprise the CDM; the de Broglie wavelength of these soft bosons, however, is sufficiently large that they cannot accumulate in galaxies. The theory predicts, inevitably, a constant anomalous acceleration in the outer Solar system, which, depending upon the choice of parameters, can be consistent with that detected by the Pioneer spacecrafts.

[1]  D. Giannios Spherically symmetric, static spacetimes in a tensor-vector-scalar theory , 2005, gr-qc/0502122.

[2]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[3]  S. McGaugh Confrontation of Modified Newtonian Dynamics Predictions with Wilkinson Microwave Anisotropy Probe First Year Data , 2004 .

[4]  S. Carroll,et al.  Lorentz-Violating Vector Fields Slow the Universe Down , 2004, hep-th/0407149.

[5]  J. Bekenstein Relativistic gravitation theory for the MOND paradigm , 2004, astro-ph/0403694.

[6]  S. McGaugh The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution , 2004, astro-ph/0403610.

[7]  S. McGaugh Confrontation of Modified Newtonian Dynamics Predictions with Wilkinson Microwave Anisotropy Probe First Year Data , 2003, astro-ph/0312570.

[8]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[9]  M. Halpern,et al.  SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .

[10]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[11]  R. Sanders,et al.  Clusters of galaxies with modified Newtonian dynamics , 2002, astro-ph/0212293.

[12]  Robert H. Sanders,et al.  Modified Newtonian dynamics as an alternative to dark matter , 2002, astro-ph/0204521.

[13]  V. Rubin,et al.  High-resolution rotation curves of low surface brightness galaxies , 2002, astro-ph/0201276.

[14]  T. Jacobson,et al.  Gravity with a dynamical preferred frame , 2000, gr-qc/0007031.

[15]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[16]  Limin Wang,et al.  New cosmological model of quintessence and dark matter , 1999, astro-ph/9910097.

[17]  J. Dalcanton,et al.  Semianalytical Models for the Formation of Disk Galaxies. II. Dark Matter versus Modified Newtonian Dynamics , 1999, astro-ph/9912004.

[18]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[19]  J. Anderson,et al.  Anderson et al. reply (to the comment by Murphy on `Indication, from pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long range acceleration') , 1998, gr-qc/9808081.

[20]  R. Sanders The Virial Discrepancy in Clusters of Galaxies in the Context of Modified Newtonian Dynamics , 1998, astro-ph/9807023.

[21]  U. Washington,et al.  Constraints on Cosmological Models from Hubble Space Telescope Observations of High-z Supernovae , 1997, astro-ph/9710123.

[22]  R. Sanders,et al.  A Stratified Framework for Scalar-Tensor Theories of Modified Dynamics , 1996, astro-ph/9612099.

[23]  D. Spergel,et al.  The Formation of Disk Galaxies , 1996, astro-ph/9611226.

[24]  J. Anderson,et al.  Improved Bounds on Nonluminous Matter in Solar Orbit: Erratum , 1995, hep-ph/9503368.

[25]  Paul J. Steinhardt,et al.  The observational case for a low-density Universe with a non-zero cosmological constant , 1995, Nature.

[26]  J. Bekenstein,et al.  GRAVITATIONAL LENSES AND UNCONVENTIONAL GRAVITY THEORIES , 1993, astro-ph/9311062.

[27]  M. Milgrom Dynamics with a Nonstandard Inertia-Acceleration Relation: An Alternative to Dark Matter in Galactic Systems , 1993, astro-ph/9303012.

[28]  R. Sanders Cosmological implications of phase coupling gravity , 1989 .

[29]  R. Sanders Phase coupling gravity and astronomical mass discrepancies , 1988 .

[30]  J. Bekenstein Phase coupling gravitation: Symmetries and gauge fields , 1988 .

[31]  M. Milgrom,et al.  Does the missing mass problem signal the breakdown of Newtonian gravity , 1984 .

[32]  Michael S. Turner,et al.  Coherent scalar-field oscillations in an expanding universe , 1983 .

[33]  M. Milgrom A Modification of the Newtonian dynamics: Implications for galaxies , 1983 .

[34]  W. Ni Theoretical frameworks for testing relativistic gravity. IV - A compendium of metric theories of gravity and their post-Newtonian limits. , 1972 .

[35]  Clifford M. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism , 1972 .

[36]  R. Dicke Long-Range Scalar Interaction , 1962 .