Automatic Glaucoma Detection Based on Optic Disc Segmentation and Texture Feature Extraction
暂无分享,去创建一个
Flávio H. D. Araújo | Maíla de Lima Claro | André Macedo Santana | Flávio Henrique Duarte de Araújo | Leonardo de Moura Santos | Wallinson Lima e Silva | Nayara Holanda de Moura | M. Claro | A. Santana | L. Santos | W. Silva | N. Moura
[1] Joao Soares. Segmentação de vasos sangüíneos em imagens de retina usando wavelets e classificadores estatísticos , 2006 .
[2] Janette B. Bradley,et al. Neural networks: A comprehensive foundation: S. HAYKIN. New York: Macmillan College (IEEE Press Book) (1994). v + 696 pp. ISBN 0-02-352761-7 , 1995 .
[3] Gustavo Carneiro,et al. An Improved Joint Optimization of Multiple Level Set Functions for the Segmentation of Overlapping Cervical Cells , 2015, IEEE Transactions on Image Processing.
[4] Rodrigo Veras,et al. Automatic Identification of Diabetic Retinopathy in Retinal Images Using Ensemble Learning , 2013 .
[5] G. H. Rosenfield,et al. A coefficient of agreement as a measure of thematic classification accuracy. , 1986 .
[6] Andrea Baraldi,et al. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.
[7] K. Duraiswamy,et al. Early detection of glaucoma in retinal images using cup to disc ratio , 2010, 2010 Second International conference on Computing, Communication and Networking Technologies.
[8] Milde M. S. Lira,et al. Combining Multiple Artificial Neural Networks Using Random Committee to Decide upon Electrical Disturbance Classification , 2007, 2007 International Joint Conference on Neural Networks.
[9] Yuan Cheng,et al. Integrated Optic Disc and Cup Segmentation with Deep Learning , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).
[10] J. R. Landis,et al. The measurement of observer agreement for categorical data. , 1977, Biometrics.
[11] Jayanthi Sivaswamy,et al. Drishti-GS: Retinal image dataset for optic nerve head(ONH) segmentation , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).
[12] Dinesh Kumar,et al. Validating retinal fundus image analysis algorithms: issues and a proposal. , 2013, Investigative ophthalmology & visual science.
[13] L. Sakata,et al. Prevalence of glaucoma in a South brazilian population: Projeto Glaucoma. , 2007, Investigative ophthalmology & visual science.
[14] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[15] J. Liu,et al. Automatic glaucoma diagnosis from fundus image , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
[16] Ravi Thomas,et al. Primary open angle glaucoma. , 1990, The National medical journal of India.
[17] Mariano Rincón,et al. Identification of the optic nerve head with genetic algorithms , 2008, Artif. Intell. Medicine.
[18] อนิรุธ สืบสิงห์,et al. Data Mining Practical Machine Learning Tools and Techniques , 2014 .
[19] Robert M. Haralick,et al. Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..
[20] T. C. Manjunath,et al. EARLY DETECTION OF GLAUCOMA THROUGH RETINAL NERVE FIBER LAYER ANALYSIS USING FRACTAL DIMENSION AND TEXTURE FEATURE , 2014 .