GLOBAL EXISTENCE OF SOLUTIONS TO A CROSS-DIFFUSION SYSTEM IN HIGHER DIMENSIONAL DOMAINS

We consider a strongly coupled nonlinear parabolic system which arises from population dynamics in $N$-dimensional $(N\geq 1)$ domains. We establish global existence of classical solutions under certain restrictions on diffusion coefficients, self-diffusion coefficients and cross-diffusion coefficients for both species.

[1]  H. Amann Dynamic theory of quasilinear parabolic systems , 1989 .

[2]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[3]  Paul Deuring,et al.  An initial-boundary-value problem for a certain density-dependent diffusion system , 1987 .

[4]  Roger Lui,et al.  Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion , 2004 .

[5]  Atsushi Yagi Global solution to some quasilinear parabolic system in population dynamics , 1993 .

[6]  Inkyung Ahn,et al.  Positive steady--states for two interacting species models with linear self-cross diffusions , 2003 .

[7]  Shoji Yotsutani On a Limiting System in the Lotka-Volterra Competition with Cross-Diffusion (Nonlinear Diffusive Systems and Related Topics) , 2002 .

[8]  Herbert Amann,et al.  Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems , 1990, Differential and Integral Equations.

[9]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[10]  Roger Lui,et al.  Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion , 2003 .

[11]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[12]  N. Shigesada,et al.  Spatial segregation of interacting species. , 1979, Journal of theoretical biology.

[13]  Seong-A Shim Uniform Boundedness and Convergence of Solutions to Cross-Diffusion Systems , 2002 .

[14]  H. Amann Dynamic theory of quasilinear parabolic systems. III. Global existence (Erratum). , 1990 .