CO2 methanation on Ru-doped ceria

We study the methanation of CO2 catalyzed by ceria doped with Ni, Co, Pd, or Ru. Ce0.96Ru0.04O2 and Ce 0.95Ru0.05O2 perform best, converting 55% of CO2 with a 99% selectivity for methane, at a temperature of 450 °C. This is comparable to the best catalysts found previously for this reaction. Ce0.95Ru0.05O2 was characterized by XRD, electron microscopy, BET, XPS, IR spectroscopy, and temperature-programmed reaction with Ar, H2, CO, and CO2 + H2. Steady-state methanation was studied at several temperatures between 100 and 500 °C. We find that the methanation reaction takes place on the reduced Ce0.95Ru0.05O2, and the role of the dopant is to make the reduction possible at lower temperature than on pure ceria. We discuss the potential for local and global effects of the dopant on catalytic chemistry.

[1]  K. Jun,et al.  Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts , 1996 .

[2]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[3]  M. Giona,et al.  A Model for the Temperature-Programmed Reduction of Low and High Surface Area Ceria , 2000 .

[4]  R. Iyer,et al.  FTIR studies on the CO, CO2 and H2 co-adsorption over Ru-RuOx/TiO2 catalyst , 1993 .

[5]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .

[6]  Kyung‐Won Park,et al.  Platinum nanocube catalysts for methanol and ethanol electrooxidation , 2008 .

[7]  Horia Metiu,et al.  Density Functional Study of the CO Oxidation on a Doped Rutile TiO2(110): Effect of Ionic Au in Catalysis , 2006 .

[8]  M. Graetzel,et al.  A fourier transform infrared spectroscopic study of C02 methanation on supported ruthenium , 1991 .

[9]  Myoung-Jae Choi,et al.  Promotion of CO2 hydrogénation to hydrocarbons in three-phase catalytic (Fe-Cu-K-Al) slurry reactors , 2003 .

[10]  Xue-qing Gong,et al.  Multiple configurations of the two excess 4f electrons on defective CeO2(111): Origin and implications , 2009 .

[11]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[12]  D. Rolison,et al.  Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity , 1999 .

[13]  G. Pacchioni Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. , 2008, The Journal of chemical physics.

[14]  Hans Schulz,et al.  Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts , 1999 .

[15]  H. Metiu,et al.  Catalysis by doped oxides : CO oxidation by AuxCe1- xO2 , 2007 .

[16]  Myoung-Jae Choi,et al.  Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons , 2006 .

[17]  R. Iyer,et al.  On the mechanism of CO and CO2 methanation over Ru/molecular-sieve catalyst , 1979 .

[18]  H. Metiu,et al.  Vacancy formation and CO adsorption on gold-doped ceria surfaces , 2008 .

[19]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[20]  Kiyoshi Otsuka,et al.  Direct partial oxidation of methane to synthesis gas by cerium oxide , 1998 .

[21]  M. Fujiwara,et al.  Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide , 1995 .

[22]  Arnold J. Forman,et al.  CO oxidation by Ti- and Al-doped ZnO: Oxygen activation by adsorption on the dopant , 2009 .

[23]  Eric W. McFarland,et al.  A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2 , 2009 .

[24]  Hyuck-Mo Lee,et al.  CO Oxidation by Rutile TiO2(110) Doped with V, W, Cr, Mo, and Mn , 2008 .

[25]  T. Egami,et al.  Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia , 2000 .

[26]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[27]  Y. Matsumura,et al.  Hydrocarbon synthesis from CO2 over Fe–Cu catalysts , 1998 .

[28]  Ki-Won Jun,et al.  Fischer–Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts , 2008 .

[29]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[30]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[31]  Joachim Sauer,et al.  Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). , 2009, Physical review letters.

[32]  Qiang Xu,et al.  Change of catalytic properties of FeZnO/zeolite composite catalyst in the hydrogenation of carbon dioxide , 1997 .

[33]  J. Barrault,et al.  Hydrocondensation of CO2 (CO) over supported iron catalysts , 1981 .

[34]  Toshiyuki Masui,et al.  SYNTHESIS AND MODIFICATION OF CERIA-BASED MATERIALS , 2002 .

[35]  V. Perrichon,et al.  Reduction of CeO2 by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements , 1991 .

[36]  J. Highfield,et al.  Diffuse-reflectance FTIR spectroscopy for kinetic and mechanistic studies of CO2 hydrogenation in a continuous recycle reactor , 1989 .

[37]  M. S. Hegde,et al.  Pt metal-CeO2 interaction: direct observation of redox coupling between Pt0/Pt2+/Pt4+ and Ce4+/Ce3+ states in Ce(0.98)Pt(0.02)O2-delta catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study. , 2009, The Journal of chemical physics.

[38]  M. S. Hegde,et al.  Ce1-xRuxO2-δ (x=0.05, 0.10): A New High Oxygen Storage Material and Pt, Pd-Free Three-Way Catalyst , 2009 .

[39]  C. H. Rochester,et al.  In situ Fourier-transform infrared studies of CO–H2 reactions over Ru–Rh/SiO2 catalysts at high pressure and temperature , 1993 .

[40]  R. Fréty,et al.  Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen , 1994 .

[41]  J. Vohs,et al.  Effect of Ceria Structure on Oxygen Migration for Rh/Ceria Catalysts , 1996 .

[42]  M. S. Hegde,et al.  Noble metal ionic catalysts. , 2009, Accounts of chemical research.

[43]  G. Marbán,et al.  Preferential oxidation of CO by CuOx/CeO2 nanocatalysts prepared by SACOP. Mechanisms of deactivation under the reactant stream , 2009 .

[44]  K. Jun,et al.  Deactivation and regeneration of Fe-K/alumina catalyst in CO2 hydrogenation , 2001 .

[45]  Iwao Omae,et al.  Aspects of carbon dioxide utilization , 2006 .

[46]  R. Gorte,et al.  Oxidation enthalpies for reduction of ceria surfaces , 2007 .

[47]  M. Grätzel,et al.  FTIR spectroscopic study of the interaction of CO2 and CO2 + H2 over partially oxidized Ru/TiO2 catalyst , 1994 .

[48]  J. Grimblot,et al.  Ru/alumina and Ru-Mo/alumina catalysts: an XPS study , 1987 .

[49]  Di Li,et al.  Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation , 1998 .

[50]  T. Riedel,et al.  Fischer–Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer–Tropsch Regime and Construction of the Catalyst , 2003 .

[51]  M. Szynkowska,et al.  Characterization of Ru/CeO2-Al2O3 catalysts and their Performance in CO2 Methanation , 2000 .

[52]  J. P. Holgado,et al.  Study of CeO2 XPS spectra by factor analysis : reduction of CeO2 , 2000 .

[53]  A. Renken,et al.  Periodic operation applied to the kinetic study of CO2 methanation , 1994 .

[54]  Di Li,et al.  Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction , 1999 .

[55]  J. Kašpar,et al.  A Temperature-Programmed and Transient Kinetic Study of CO2Activation and Methanation over CeO2Supported Noble Metals , 1997 .

[56]  K. Jun,et al.  Deactivation study on a coprecipitated Fe-Cu-K-Al catalyst in CO2 hydrogenation , 2001 .

[57]  M. Daturi,et al.  IR study of polycrystalline ceria properties in oxidised and reduced states , 1999 .

[58]  E. S. Shpiro,et al.  XPS studies of Ru inγ-Al2O3 supported catalysts , 1984 .

[59]  J. Llorca,et al.  Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders , 2005 .

[60]  A. Renken,et al.  Transient drift spectroscopy for the determination of the surface reaction kinetics of CO2 methanation , 1994 .

[61]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[62]  H. Metiu,et al.  DFT Studies of Oxygen Vacancies on Undoped and Doped La2O3 Surfaces , 2010 .

[63]  Horia Metiu Physical Chemistry: Thermodynamics , 2006 .

[64]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[65]  Jyhfu Lee,et al.  Hydrogenation of Carbon Dioxide on Unpromoted and Potassium-Promoted Iron Catalysts , 1989 .

[66]  H. Metiu,et al.  Modification of the Oxidative Power of ZnO(101̄0) Surface by Substituting Some Surface Zn Atoms with Other Metals , 2007 .

[67]  T. Shido,et al.  Reactant-Promoted Reaction Mechanism for Water-Gas Shift Reaction on Rh-Doped CeO2 , 1993 .

[68]  Hiroyuki Yasuda,et al.  Transformation of carbon dioxide. , 2007, Chemical reviews.

[69]  M. Ravindram,et al.  Methanation of CO2 over Ru−SiO2 catalyst , 1992 .

[70]  H. Metiu,et al.  Selective promotion of different modes of methanol adsorption via the cation substitutional doping of a ZnO(101¯0) surface , 2008 .

[71]  S. Galvagno,et al.  Influence of the support on CO2 methanation over Ru catalysts: an FT-IR study , 1998 .

[72]  R. Gorte Ceria in catalysis: From automotive applications to the water–gas shift reaction , 2010 .

[73]  R. Schlögl,et al.  Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: Oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism , 2006 .

[74]  B. Johansson,et al.  Modeling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism , 2007 .

[75]  Sangtae Kim,et al.  Oxygen nonstoichiometry of nanosized ceria powder , 2004 .

[76]  A. Wokaun,et al.  Carbon dioxide hydrogenation over nickel/zirconia catalysts from amorphous precursors: on the mechanism of methane formation , 1991 .

[77]  M. Grätzel,et al.  Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure , 1987, Nature.

[78]  Yongqing Zhang,et al.  CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts , 2002 .

[79]  J. Pintado,et al.  Hydrogen chemisorption on ceria: influence of the oxide surface area and degree of reduction , 1993 .

[80]  Shaobin Wang,et al.  Catalytic Conversion of Alkanes to Olefins by Carbon Dioxide Oxidative Dehydrogenation-A Review , 2004 .