On fixed-parameter tractability and approximability of NP-hard optimization problems

Fixed-parameter tractability and approximability of NP-hard optimization problems are studied based on a model GC(s(n), Pi /sub k//sup L/). The main results are (1) a class of NP-hard optimization problems, including dominating-set and zero-one integer-programing, are fixed-parameter tractable if and only if GC(s(n), Pi /sub 2//sup L/) contained in P for some s(n) in omega (log n); (2) most approximable NP-hard optimization problems are fixed-parameter tractable. In particular, the class MAX NP is fixed-parameter tractable; (3) a class of optimization problems do not have fully polynomial time approximation scheme unless GC(s(n), Pi /sub k//sup L/) contained in P for some s(n) in omega (log n) and for some k>l; and (4) every fixed-parameter tractable optimization problem can be approximated in polynomial time to a non-trivial ratio.<<ETX>>

[1]  Liming Cai,et al.  On the Amount of Nondeterminism and the Power of Verifying (Extended Abstract) , 1993, MFCS.

[2]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[3]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[4]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[5]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[6]  Phokion G. Kolaitis,et al.  Approximation properties of NP minimization classes , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[7]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[8]  Marty J. Wolf Nondeterministic Circuits, Space Complexity and Quasigroups , 1994, Theor. Comput. Sci..

[9]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Michael R. Fellows,et al.  Fixed-Parameter Intractability II (Extended Abstract) , 1993, STACS.

[12]  Michael R. Fellows,et al.  Fixed-parameter intractability , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[13]  Desh Ranjan,et al.  Quantifiers and approximation , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.

[14]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..

[15]  Mihalis Yannakakis,et al.  On limited nondeterminism and the complexity of the V-C dimension , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[16]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[17]  Carsten Lund,et al.  Proof verification and the intractability of approximation problems , 1992, FOCS 1992.

[18]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1993, STOC.

[19]  Michael R. Fellows,et al.  On the complexity of fixed parameter problems , 1989, 30th Annual Symposium on Foundations of Computer Science.