On-line modeling for real-time 3D target tracking

Model-based object tracking can provide autonomous mobile robotic systems with real-time 6-dof pose information, for example, enabling them to rendezvous with targets from a particular desired direction. Most existing model-based trackers, however, require the geometric model of the target to be known a priori, which may pose a practical problem in real-world environments. This paper presents a novel 3D modeler capable of building an approximate model of a target object on-line. The proposed technique rapidly constructs a 3D tessellated enveloping mesh and uses projective texture mapping to further model the target object’s surface features. Separation of the target object from background clutter is achieved via customizable interest filters. The resulting real-time object-tracking system was tested extensively via simulations and experiments.

[1]  Gregory D. Hager,et al.  Real-time tracking of image regions with changes in geometry and illumination , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Fredrik Kahl,et al.  Multiview reconstruction of space curves , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Xun William Xu,et al.  Contemporary technologies for 3D digitization of Maori and Pacific Island artifacts , 2009, Int. J. Imaging Syst. Technol..

[4]  In-So Kweon,et al.  Robust model-based 3D object recognition by combining feature matching with tracking , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[5]  Ayellet Tal,et al.  FlexiStickers: photogrammetric texture mapping using casual images , 2009, ACM Trans. Graph..

[6]  Frank P. Ferrie,et al.  Image-Based Model Updating , 2002, BMVC.

[7]  Éric Marchand,et al.  A real-time tracker for markerless augmented reality , 2003, The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings..

[8]  B. Benhabib,et al.  Tracking of rigid-bodies for autonomous surveillance , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[9]  Dave Shreiner,et al.  OpenGL(R) 1.4 Reference Manual (4th Edition) , 2004 .

[10]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[11]  C. Everitt Projective texture mapping , 2001 .

[12]  Éric Marchand,et al.  Real-time markerless tracking for augmented reality: the virtual visual servoing framework , 2006, IEEE Transactions on Visualization and Computer Graphics.

[13]  Bruno Raffin,et al.  A Distributed Approach for Real Time 3D Modeling , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[14]  Wolfgang Ponweiser,et al.  A system to navigate a robot into a ship structure , 2001, Machine Vision and Applications.

[15]  Roberto Cipolla,et al.  Real-Time Visual Tracking of Complex Structures , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Jeffrey Mark Siskind,et al.  Image Segmentation with Ratio Cut , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[18]  Miao Liao,et al.  Real-time Global Stereo Matching Using Hierarchical Belief Propagation , 2006, BMVC.

[19]  Michel Dhome,et al.  Real Time Robust Template Matching , 2002, BMVC.

[20]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[21]  Danica Kragic,et al.  Integration of Model-based and Model-free Cues for Visual Object Tracking in 3D , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[22]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[23]  Rachid Deriche,et al.  Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space BasedApproach , 2002, MVA.

[24]  Beno Benhabib,et al.  Colour-Gradient Redundancy for Real-time Spatial Pose Tracking in Autonomous Robot Navigation , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[25]  Ruigang Yang,et al.  How Far Can We Go with Local Optimization in Real-Time Stereo Matching , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[26]  Wolfgang Rabbel,et al.  Shear waves in near surface 3D media-SH-wavefield separation, refraction time migration and tomography , 2009 .

[27]  Matthias Trapp,et al.  Dynamic Mapping of Raster-Data for 3D Geovirtual Environments , 2009, 2009 13th International Conference Information Visualisation.

[28]  Radu Horaud,et al.  Multiple-Camera Tracking of Rigid Objects , 2002, Int. J. Robotics Res..

[29]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[30]  Toshio Fukuda,et al.  Department of Mechanical and Industrial Engineering, University of Toronto,5 King’s College Road, Toronto, ON, M5S 3G8, Canada , 2008 .

[31]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[32]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[33]  Stephen J. McKenna,et al.  Tracking interacting people , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[34]  Kiriakos N. Kutulakos Approximate N-View Stereo , 2000, ECCV.

[35]  S. Yordkayhun,et al.  3D seismic reflection surveying at the CO2SINK project site, Ketzin, Germany: a study for extracting shallow subsurface information , 2009 .

[36]  Rajeev Sharma,et al.  Appearance management and cue fusion for 3D model-based tracking , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[37]  Thomas Sugar,et al.  Mobile robot interception using human navigational principles: Comparison of active versus passive tracking algorithms , 2006, Auton. Robots.

[38]  Panos Liatsis,et al.  A constrained nonlinear energy minimization framework for the regularization of the stereo correspondence problem , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[39]  Damir Vucina,et al.  Reverse Engineering with Shape Optimization using Workflow-Based Computation and Distributed Computing , 2022 .

[40]  Ronald Lumia,et al.  Vision-based robotic convoy driving , 1995, Machine Vision and Applications.

[41]  Pierre Thierry,et al.  3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: The Paris example (France) , 2009 .

[42]  Rita Streich,et al.  3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy , 2009 .

[43]  Edward Tunstel,et al.  Planetary Rover Developments Supporting Mars Exploration, Sample Return and Future Human-Robotic Colonization , 2003, Auton. Robots.

[44]  B. Bhanu,et al.  Adaptive image segmentation using genetic and hybrid search methods , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[45]  H. Pedrini Modeling dense range images through fast polygonal approximations , 2001, Proceedings 11th International Conference on Image Analysis and Processing.

[46]  R. Fitzpatrick,et al.  An expert system to predict intricate saline–sodic subsoil patterns in upland South Australia , 2009 .

[47]  Marco La Cascia,et al.  Fast, Reliable Head Tracking under Varying Illumination: An Approach Based on Registration of Texture-Mapped 3D Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Alexander Zelinsky,et al.  CeDAR: A real-world vision system , 2004, Machine Vision and Applications.

[49]  Gilles Bellefleur,et al.  Acoustic impedance inversion and seismic reflection continuity analysis for delineating gas hydrate resources near the Mallik research sites, Mackenzie Delta, Northwest Territories, Canada , 2009 .

[50]  Markus Vincze,et al.  Vision for Robotics: a tool for model-based object tracking , 2005, IEEE Robotics & Automation Magazine.

[51]  Louise A. Dennis,et al.  System Description: Embedding Verification into Microsoft Excel , 2000, CADE.

[52]  Paul W. Fieguth,et al.  Incremental shape reconstruction using stereo image sequences , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[53]  Chin-Chen Chang,et al.  Hiding data: a high-capacity distortionless approach , 2009, Multimedia Systems.

[54]  Ruigang Yang,et al.  Real‐Time Consensus‐Based Scene Reconstruction Using Commodity Graphics Hardware † , 2003, Comput. Graph. Forum.

[55]  Mei Han,et al.  An algorithm for multiple object trajectory tracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[56]  Patrick Bouthemy,et al.  A 2D-3D model-based approach to real-time visual tracking , 2001, Image Vis. Comput..

[57]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[58]  W. Kinzelbach,et al.  Spatial mapping of submerged cave systems by means of airborne electromagnetics: an emerging technology to support protection of endangered karst aquifers , 2009 .

[59]  Tardi Tjahjadi,et al.  Simultaneous feature tracking and three-dimensional object reconstruction from an image sequence , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[60]  Mario Costa Sousa,et al.  Sketch-based modeling: A survey , 2009, Comput. Graph..

[61]  Sukhan Lee,et al.  A real-time 3D workspace modeling with stereo camera , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[62]  Volkan Atalay,et al.  Silhouette-based 3-D model reconstruction from multiple images , 2003, IEEE Trans. Syst. Man Cybern. Part B.