Extraction of Fragments and Waves After Impact Damage in Particle-Based Simulations

The analysis of simulation results and the verification against experimental data is essential to develop and interpret simulation models for impact damage. We present two visualization techniques to post-process particle-based simulation data, and we highlight new aspects for the quantitative comparison with experimental data. As the underlying simulation model we consider the particle method Peridynamics, a non-local generalization of continuum mechanics. The first analysis technique is an extended component labeling algorithm to extract the fragment size and the corresponding histograms. The distribution of the fragment size can be obtained by real-world experiments as demonstrated in Schram and Meyer (Simulating the formation and evolution of behind armor debris fields. ARL-RP 109, U.S. Army Research Laboratory, 2005), Vogler et al. (Int J Impact Eng 29:735–746, 2003). The second approach focuses on the visualization of the stress after an impact. Here, the particle-based data is re-sampled and rendered with standard volume rendering techniques to address the interference pattern of the stress wave after reflection at the boundary. For the extraction and visual analysis, we used the widely-used Stanford bunny as a complex geometry. For a quantitative study with a simple geometry, the edge-on impact experiment (Schradin, Scripts German Acad Aeronaut Res 40:21–68, 1939; Strassburger, Int J Appl Ceram Technol 1:1:235–242, 2004; Kawai et al., Procedia Eng 103:287–293, 2015) can be applied. With these new visualization approaches, new insights for the quantitative comparison of fragmentation and wave propagation become intuitively accessible.

[1]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[2]  Kazuyoshi Arai,et al.  Stress wave and damage propagation in transparent materials subjected to hypervelocity impact , 2015 .

[3]  Christian Willberg,et al.  Peridigm Users Guide , 2018 .

[4]  Guanfeng Zhang,et al.  Why do cracks branch? A peridynamic investigation of dynamic brittle fracture , 2015, International Journal of Fracture.

[5]  S.J. Schraml,et al.  Simulating the Formation and Evolution of Behind Armor Debris Fields , 2005, 2005 Users Group Conference (DOD-UGC'05).

[6]  Hai Huang,et al.  Fragment Identification and Statistics Method of Hypervelocity Impact SPH Simulation , 2011 .

[7]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[8]  E. Strassburger,et al.  Visualization of Impact Damage in Ceramics Using the Edge‐On Impact Technique , 2005 .

[9]  Samuel J. Raymond,et al.  A meshfree study of the Kalthoff–Winkler experiment in 3D at room and low temperatures under dynamic loading using viscoplastic modelling , 2014 .

[10]  Joshua A. Levine,et al.  A peridynamic perspective on spring-mass fracture , 2014, SCA '14.

[11]  Stewart Andrew Silling,et al.  Dynamic fracture modeling with a meshfree peridynamic code , 2003 .

[12]  Akira Kobayashi,et al.  Phenomenological aspects of viscoelastic crack propagation , 1974 .

[13]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[14]  Klaus Thoma,et al.  Transient stress and failure analysis of impact experiments with ceramics , 2010 .

[15]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[16]  Huajian Gao,et al.  Fracture of graphene: a review , 2015, International Journal of Fracture.

[17]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[18]  Sandia Report,et al.  Peridigm Users' Guide v1.0.0 , 2012 .

[19]  Jay Fineberg,et al.  Instability in dynamic fracture , 1999 .

[20]  Jay Fineberg,et al.  Universal features of the microbranching instability in dynamic fracture , 1998 .

[21]  John T. Foster,et al.  Dynamic crack initiation toughness : experiments and peridynamic modeling. , 2009 .

[22]  Dirk Pflüger,et al.  Non-intrusive Uncertainty Quantification with Sparse Grids for Multivariate Peridynamic Simulations , 2015 .

[23]  Lalit C. Chhabildas,et al.  Fragmentation of Materials In Expanding Tube Experiments , 2003 .

[24]  Steven F. Henke,et al.  Mesh sensitivity in peridynamic simulations , 2014, Comput. Phys. Commun..

[25]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[26]  Patrick Diehl,et al.  Simulation of Wave Propagation and Impact Damage in Brittle Materials Using Peridynamics , 2015 .

[27]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..