A nested Schur complement solver with mesh-independent convergence for the time domain photonics modeling

A nested Schur complement solver is proposed for iterative solution of linear systems arising in exponential and implicit time integration of the Maxwell equations with perfectly matched layer (PML) nonreflecting boundary conditions. These linear systems are the so-called double saddle point systems whose structure is handled by the Schur complement solver in a nested, two-level fashion. The solver is demonstrated to have a mesh-independent convergence at the outer level, whereas the inner level system is of elliptic type and thus can be treated efficiently by a variety of solvers.

[1]  W. Marsden I and J , 2012 .

[2]  Mike A. Botchev,et al.  Exponential Krylov time integration for modeling multi-frequency optical response with monochromatic sources , 2017, J. Comput. Appl. Math..

[3]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[4]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[5]  Marlis Hochbruck,et al.  Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..

[6]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[7]  S. Eisenstat Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .

[8]  Steven G. Johnson,et al.  Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.

[9]  Hillel Tal-Ezer,et al.  On Restart and Error Estimation for Krylov Approximation of w=f(A)v , 2007, SIAM J. Sci. Comput..

[10]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[11]  Marlis Hochbruck,et al.  Convergence of an ADI splitting for Maxwell’s equations , 2015, Numerische Mathematik.

[12]  Stefan Güttel,et al.  Rational Krylov Methods for Operator Functions , 2010 .

[13]  Mike A. Botchev,et al.  A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations , 2015, J. Comput. Appl. Math..

[14]  M. Benzi,et al.  INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .

[15]  Martin J. Gander,et al.  PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..

[16]  Mike A. Botchev,et al.  Krylov subspace exponential time domain solution of Maxwell's equations in photonic crystal modeling , 2016, J. Comput. Appl. Math..

[17]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[18]  Daniel A. White,et al.  A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..

[19]  Christian Wieners,et al.  Efficient time integration for discontinuous Galerkin approximations of linear wave equations , 2015 .

[20]  Jörg Niehoff,et al.  Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren , 2007 .

[21]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[22]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[23]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[24]  Jaap J. W. van der Vegt,et al.  Time-integration methods for finite element discretisations of the second-order Maxwell equation , 2012, Comput. Math. Appl..

[25]  I. Moret,et al.  RD-Rational Approximations of the Matrix Exponential , 2004 .

[26]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[27]  Jan G. Verwer,et al.  Numerical Integration of Damped Maxwell Equations , 2008, SIAM J. Sci. Comput..

[28]  Stefan Güttel,et al.  Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[29]  Michele Benzi,et al.  Iterative Methods for Double Saddle Point Systems , 2018, SIAM J. Matrix Anal. Appl..

[30]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[31]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[32]  Maxim A. Olshanskii,et al.  Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..

[33]  J. D. Cloet,et al.  Preconditioners based on splitting for time domain photonic crystal modeling , 2015 .

[34]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[35]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[36]  J. Verwer,et al.  Unconditionally stable integration of Maxwell's equations , 2009 .

[37]  Stéphane Descombes,et al.  Recent advances on a DGTD method for time-domain electromagnetics , 2013 .

[38]  Stéphane Lanteri,et al.  Locally Implicit Discontinuous Galerkin Time Domain Method for Electromagnetic Wave Propagation in Dispersive Media Applied to Numerical Dosimetry in Biological Tissues , 2016, SIAM J. Sci. Comput..