A nested Schur complement solver with mesh-independent convergence for the time domain photonics modeling
暂无分享,去创建一个
[1] W. Marsden. I and J , 2012 .
[2] Mike A. Botchev,et al. Exponential Krylov time integration for modeling multi-frequency optical response with monochromatic sources , 2017, J. Comput. Appl. Math..
[3] M. Eiermann,et al. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .
[4] L. Knizhnerman,et al. Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..
[5] Marlis Hochbruck,et al. Preconditioning Lanczos Approximations to the Matrix Exponential , 2005, SIAM J. Sci. Comput..
[6] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[7] S. Eisenstat. Efficient Implementation of a Class of Preconditioned Conjugate Gradient Methods , 1981 .
[8] Steven G. Johnson,et al. Notes on Perfectly Matched Layers (PMLs) , 2021, ArXiv.
[9] Hillel Tal-Ezer,et al. On Restart and Error Estimation for Krylov Approximation of w=f(A)v , 2007, SIAM J. Sci. Comput..
[10] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[11] Marlis Hochbruck,et al. Convergence of an ADI splitting for Maxwell’s equations , 2015, Numerische Mathematik.
[12] Stefan Güttel,et al. Rational Krylov Methods for Operator Functions , 2010 .
[13] Mike A. Botchev,et al. A block Krylov subspace implementation of the time-parallel Paraexp method and its extension for nonlinear partial differential equations , 2015, J. Comput. Appl. Math..
[14] M. Benzi,et al. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2010) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2267 Modified augmented Lagrangian preconditioners for the incompressible Navier , 2022 .
[15] Martin J. Gander,et al. PARAEXP: A Parallel Integrator for Linear Initial-Value Problems , 2013, SIAM J. Sci. Comput..
[16] Mike A. Botchev,et al. Krylov subspace exponential time domain solution of Maxwell's equations in photonic crystal modeling , 2016, J. Comput. Appl. Math..
[17] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[18] Daniel A. White,et al. A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..
[19] Christian Wieners,et al. Efficient time integration for discontinuous Galerkin approximations of linear wave equations , 2015 .
[20] Jörg Niehoff,et al. Projektionsverfahren zur Approximation von Matrixfunktionen mit Anwendungen auf die Implementierung exponentieller Integratoren , 2007 .
[21] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[22] Chen Greif,et al. Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..
[23] D. Schötzau,et al. Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .
[24] Jaap J. W. van der Vegt,et al. Time-integration methods for finite element discretisations of the second-order Maxwell equation , 2012, Comput. Math. Appl..
[25] I. Moret,et al. RD-Rational Approximations of the Matrix Exponential , 2004 .
[26] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[27] Jan G. Verwer,et al. Numerical Integration of Damped Maxwell Equations , 2008, SIAM J. Sci. Comput..
[28] Stefan Güttel,et al. Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..
[29] Michele Benzi,et al. Iterative Methods for Double Saddle Point Systems , 2018, SIAM J. Matrix Anal. Appl..
[30] Maxim A. Olshanskii,et al. An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..
[31] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[32] Maxim A. Olshanskii,et al. Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..
[33] J. D. Cloet,et al. Preconditioners based on splitting for time domain photonic crystal modeling , 2015 .
[34] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[35] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[36] J. Verwer,et al. Unconditionally stable integration of Maxwell's equations , 2009 .
[37] Stéphane Descombes,et al. Recent advances on a DGTD method for time-domain electromagnetics , 2013 .
[38] Stéphane Lanteri,et al. Locally Implicit Discontinuous Galerkin Time Domain Method for Electromagnetic Wave Propagation in Dispersive Media Applied to Numerical Dosimetry in Biological Tissues , 2016, SIAM J. Sci. Comput..