An Analytical Study of Laminar Film Condensation: Part 2—Single and Multiple Horizontal Tubes

The boundary-layer equations for laminar film condensation are solved for (a) a single horizontal tube, and (b) a vertical bank of horizontal tubes. For the single-tube case, the inertia effects are included and the vapor is assumed to be stationary outside the vapor boundary layer. Velocity and temperature profiles are obtained for the case μv ρv /μρ ≪ 1 and similarity is found to exist exactly near the top stagnation point, and approximately for the most part of the tube. Heat-transfer results computed with these similar profiles are presented and discussed. For the multiple-tube case, the analysis includes the effect of condensation between tubes, which is shown to be partly responsible for the high observed heat-transfer rate for vertical tube banks. The inertia effects are neglected due to the insufficiency of boundary-layer theory in this case. Heat-transfer coefficients are presented and compared with experiments. The theoretical results for both cases are also presented in approximate formulas for ease of application.