Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation
暂无分享,去创建一个
[1] Peter Monk,et al. The numerical solution of the three-dimensional inverse scattering problem for time harmonic acoustic waves , 1987 .
[2] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[3] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[4] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[5] Ralf Hiptmair,et al. Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..
[6] Ohannes A. Karakashian,et al. Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..
[7] Peter Monk,et al. A least-squares method for the Helmholtz equation , 1999 .
[8] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[9] Ohannes A. Karakashian,et al. A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..
[10] Ralf Hiptmair,et al. PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .
[11] John A. Ekaterinaris,et al. Effective Computational Methods for Wave Propagation , 2008 .
[12] A. K. Aziz,et al. On the Numerical Solutions of Helmholtz’s Equation by the Finite Element Method , 1980 .
[13] Gwénaël Gabard,et al. Discontinuous Galerkin methods with plane waves for time-harmonic problems , 2007, J. Comput. Phys..
[14] Long Chen,et al. Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations , 2011, Math. Comput..
[15] D. Schötzau,et al. ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .
[16] Kunibert G. Siebert,et al. Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.
[17] C. L. Chang,et al. A least-squares finite element method for the Helmholtz equation , 1990 .
[18] Joseph E. Pasciak,et al. Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations , 2003, Math. Comput..
[19] Haijun Wu,et al. Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..
[20] Stefan A. Sauter,et al. Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..
[21] Carsten Carstensen,et al. A unifying theory of a posteriori error control for discontinuous Galerkin FEM , 2009, Numerische Mathematik.
[22] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[23] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[24] Ivo Babuška,et al. A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .
[25] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[26] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[27] Peter Hansbo,et al. Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .
[28] F. Ihlenburg. Finite Element Analysis of Acoustic Scattering , 1998 .
[29] Mark Ainsworth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..
[30] I. Babuska,et al. Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .
[31] Timothy C. Warburton,et al. Convergence Analysis of an Adaptive Interior Penalty Discontinuous Galerkin Method , 2008, SIAM J. Numer. Anal..
[32] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[33] Eric T. Chung,et al. Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..
[34] Andrea Toselli,et al. Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..
[35] Ricardo H. Nochetto,et al. Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..
[36] Fernando A. Rochinha,et al. A discontinuous finite element formulation for Helmholtz equation , 2006 .
[37] Ilaria Perugia,et al. An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..
[38] J. Nédélec. Acoustic and electromagnetic equations , 2001 .
[39] Charbel Farhat,et al. Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..
[40] I. Babuska,et al. The finite element method and its reliability , 2001 .
[41] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[42] Haijun Wu,et al. hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..
[43] Mary F. Wheeler. A Posteriori Error Estimates and Mesh Adaptation Strategy for Discontinuous Galerkin Methods Applied to Diffusion Problems , 2000 .
[44] Peter Monk,et al. Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation , 2011, J. Sci. Comput..