Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for the Helmholtz equation

In this thesis, we are mainly concerned with the numerical solution of the two dimensional Helmholtz equation by an adaptive Interior Penalty Discontinuous Galerkin (IPDG) method based on adaptively refined simplicial triangulations of the computational domain. The a posteriori error analysis involves a residual type error estimator consisting of element and edge residuals and a consistency error which, however, can be controlled by the estimator. The refinement is taken care of by the standard bulk criterion (Dorfler marking) known from the convergence analysis of adaptive finite element methods for linear second-order elliptic PDEs. The main result is a contraction property for a weighted sum of the energy norm of the error and the estimator which yields convergence of the adaptive IPDG approach. Numerical results are given that illustrate the quasi-optimality of the method.

[1]  Peter Monk,et al.  The numerical solution of the three-dimensional inverse scattering problem for time harmonic acoustic waves , 1987 .

[2]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[3]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[4]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[5]  Ralf Hiptmair,et al.  Plane Wave Discontinuous Galerkin Methods for the 2D Helmholtz Equation: Analysis of the p-Version , 2011, SIAM J. Numer. Anal..

[6]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[7]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[8]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[9]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[10]  Ralf Hiptmair,et al.  PLANE WAVE DISCONTINUOUS GALERKIN METHODS: ANALYSIS OF THE h-VERSION ∗, ∗∗ , 2009 .

[11]  John A. Ekaterinaris,et al.  Effective Computational Methods for Wave Propagation , 2008 .

[12]  A. K. Aziz,et al.  On the Numerical Solutions of Helmholtz’s Equation by the Finite Element Method , 1980 .

[13]  Gwénaël Gabard,et al.  Discontinuous Galerkin methods with plane waves for time-harmonic problems , 2007, J. Comput. Phys..

[14]  Long Chen,et al.  Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations , 2011, Math. Comput..

[15]  D. Schötzau,et al.  ENERGY NORM A POSTERIORI ERROR ESTIMATION OF hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS , 2007 .

[16]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[17]  C. L. Chang,et al.  A least-squares finite element method for the Helmholtz equation , 1990 .

[18]  Joseph E. Pasciak,et al.  Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations , 2003, Math. Comput..

[19]  Haijun Wu,et al.  Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number , 2009, SIAM J. Numer. Anal..

[20]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[21]  Carsten Carstensen,et al.  A unifying theory of a posteriori error control for discontinuous Galerkin FEM , 2009, Numerische Mathematik.

[22]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[23]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[24]  Ivo Babuška,et al.  A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .

[25]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[26]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[27]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[28]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[29]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Finite Element Approximation , 2007, SIAM J. Numer. Anal..

[30]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[31]  Timothy C. Warburton,et al.  Convergence Analysis of an Adaptive Interior Penalty Discontinuous Galerkin Method , 2008, SIAM J. Numer. Anal..

[32]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[33]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[34]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[35]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[36]  Fernando A. Rochinha,et al.  A discontinuous finite element formulation for Helmholtz equation , 2006 .

[37]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[38]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[39]  Charbel Farhat,et al.  Convergence Analysis of a Discontinuous Galerkin Method with Plane Waves and Lagrange Multipliers for the Solution of Helmholtz Problems , 2009, SIAM J. Numer. Anal..

[40]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[41]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[42]  Haijun Wu,et al.  hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number , 2008, Math. Comput..

[43]  Mary F. Wheeler A Posteriori Error Estimates and Mesh Adaptation Strategy for Discontinuous Galerkin Methods Applied to Diffusion Problems , 2000 .

[44]  Peter Monk,et al.  Error Analysis for a Hybridizable Discontinuous Galerkin Method for the Helmholtz Equation , 2011, J. Sci. Comput..