Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems
暂无分享,去创建一个
[1] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[2] Arnold Neumaier,et al. OSGA: a fast subgradient algorithm with optimal complexity , 2014, Mathematical Programming.
[3] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[4] Yurii Nesterov,et al. Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..
[5] Antonin Chambolle,et al. On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..
[6] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[7] Volker Roth,et al. The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms , 2008, ICML '08.
[8] D. Balding,et al. Structured Regularizers for High-Dimensional Problems : Statistical and Computational Issues , 2014 .
[9] Yuchen Zhang,et al. Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization , 2014, ICML.
[10] Yoram Singer,et al. Efficient Online and Batch Learning Using Forward Backward Splitting , 2009, J. Mach. Learn. Res..
[11] Antonin Chambolle,et al. Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.
[12] P. Bühlmann,et al. The group lasso for logistic regression , 2008 .
[13] Peter Richtárik,et al. Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.
[14] Zhi-Quan Luo,et al. Parallel Direction Method of Multipliers , 2014, NIPS.
[15] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[16] John Wright,et al. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.
[17] Zhanxing Zhu,et al. Adaptive Stochastic Primal-Dual Coordinate Descent for Separable Saddle Point Problems , 2015, ECML/PKDD.
[18] Zhi-Quan Luo,et al. On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.
[19] Peter Richtárik,et al. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.
[21] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[22] Stephen P. Boyd,et al. Block splitting for distributed optimization , 2013, Mathematical Programming Computation.
[23] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[24] Francis Bach,et al. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.
[25] M. Wainwright. Structured Regularizers for High-Dimensional Problems: Statistical and Computational Issues , 2014 .
[26] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[27] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .