KdV charges in TTbar theories and new models with super-Hagedorn behavior
暂无分享,去创建一个
[1] Ruben Monten,et al. T ¯ T and the mirage of a bulk cutoff , 2021 .
[2] R. Rashkov. On some (integrable) structures in low-dimensional holography , 2019, Nuclear Physics B.
[3] Keun-Young Kim,et al. Entanglement and Rényi entropy of multiple intervals in TT¯ -deformed CFT and holography , 2019, Physical Review D.
[4] Kentaroh Yoshida,et al. Gravitational perturbations as $T\bar{T}$-deformations in 2D dilaton gravity systems. , 2019, 1906.03865.
[5] A. Sfondrini,et al. On TT¯ deformations and supersymmetry , 2019 .
[6] S. Frolov. TTbar deformation and the light-cone gauge , 2019, 1905.07946.
[7] Y. Nakayama. Holographic dual of conformal field theories with very special TJ¯ deformations , 2019, Physical Review D.
[8] Yunfeng Jiang. arXiv : Lectures on solvable irrelevant deformations of 2d quantum field theory , 2019 .
[9] Yunfeng Jiang. Lectures on solvable irrelevant deformations of 2d quantum field theory , 2019, 1904.13376.
[10] Toshihiro Ota. Comments on holographic entanglements in cutoff AdS , 2019, 1904.06930.
[11] Y. Nomura,et al. Comments on holographic entanglement entropy in TT deformed conformal field theories , 2019, Physical Review D.
[12] A. Banerjee,et al. Entanglement entropy for TT deformed CFT in general dimensions , 2019, Nuclear Physics B.
[13] S. Datta,et al. Sphere partition functions & cut-off AdS , 2019, Journal of High Energy Physics.
[14] K. Sfetsos,et al. Integrable Lorentz-breaking deformations and RG flows , 2019, 1902.05407.
[15] Monica Guica. On correlation functions in JT¯-deformed CFTs , 2019, Journal of Physics A: Mathematical and Theoretical.
[16] A. Sfondrini,et al. Integrable S matrix, mirror TBA and spectrum for the stringy AdS3 × S3 × S3 × S1 WZW model , 2018, Journal of High Energy Physics.
[17] Yuan Sun,et al. Note on the Rényi entropy of 2D perturbed fermions , 2019, Physical Review D.
[18] M. M. Sheikh-Jabbari,et al. Holographic integration of TT¯$$ T\overline{T} $$ & JT¯$$ J\overline{T} $$ via O(d, d) , 2018, Journal of High Energy Physics.
[19] M. Lashkevich,et al. The complex sinh-Gordon model: form factors of descendant operators and current-current perturbations , 2018, Journal of High Energy Physics.
[20] Y. Nakayama. Very special TJ¯ deformed CFT , 2018, Physical Review D.
[21] S. Sethi,et al. Supersymmetry and TT¯$$ T\overline{T} $$ deformations , 2018, Journal of High Energy Physics.
[22] A. Sfondrini,et al. On TT¯$$ T\overline{T} $$ deformations and supersymmetry , 2018, Journal of High Energy Physics.
[23] M. Tierz,et al. Large N phase transition in TT¯$$ T\overline{T} $$ -deformed 2d Yang-Mills theory on the sphere , 2018, Journal of High Energy Physics.
[24] R. Conti,et al. The TT¯$$ \mathrm{T}\overline{\mathrm{T}} $$ perturbation and its geometric interpretation , 2018, Journal of High Energy Physics.
[25] Soumangsu Chakraborty. Wilson loop in a TT‾ like deformed CFT2 , 2018, Nuclear Physics B.
[26] O. Aharony,et al. Modular covariance and uniqueness of JT¯$$ J\overline{T} $$ deformed CFTs , 2018, Journal of High Energy Physics.
[27] O. Aharony,et al. Modular invariance and uniqueness of TT¯$$ T\overline{T} $$ deformed CFT , 2018, Journal of High Energy Physics.
[28] Thomas Hartman,et al. Holography at finite cutoff with a T2 deformation , 2018, Journal of High Energy Physics.
[29] William Cottrell,et al. Comments on TT¯ double trace deformations and boundary conditions , 2018, Physics Letters B.
[30] M. Mezei,et al. Solving a family of T T̄ -like theories , 2019 .
[31] S. Sethi,et al. Supersymmetry and T T deformations , 2019 .
[32] O. Aharony,et al. Modular covariance and uniqueness of J ¯ T deformed CFTs , 2019 .
[33] M. M. Sheikh-Jabbari,et al. Holographic integration of T T̄ & JT̄ via O ( d , d ) , 2019 .
[34] Yunfeng Jiang. Expectation value of TT operator in curved spacetimes , 2019 .
[35] Chanyong Park. Holographic entanglement entropy in cutoff AdS , 2018, International Journal of Modern Physics A.
[36] Vasudev Shyam. Finite cutoff AdS5 holography and the generalized gradient flow , 2018, Journal of High Energy Physics.
[37] S. Dubovsky,et al. Undressing confining flux tubes with TT¯ , 2018, Physical Review D.
[38] S. Datta,et al. TT bardeformed partition functions , 2018 .
[39] R. Conti,et al. Generalised Born-Infeld models, Lax operators and the TT¯$$ \mathrm{T}\overline{\mathrm{T}} $$ perturbation , 2018, Journal of High Energy Physics.
[40] Valentino F. Foit,et al. TT¯$$ T\overline{T} $$ type deformation in the presence of a boundary , 2018, Journal of High Energy Physics.
[41] Wei Song,et al. Strings on warped AdS3 via TJ¯$$ \mathrm{T}\overline{\mathrm{J}} $$ deformations , 2018, Journal of High Energy Physics.
[42] S. Datta,et al. TT¯$$ T\overline{T} $$ deformed partition functions , 2018, Journal of High Energy Physics.
[43] William Donnelly,et al. Entanglement entropy and $T \overline{T}$ deformation , 2018, 1806.07444.
[44] A. Sfondrini,et al. Integrable spin chain for stringy Wess-Zumino-Witten models , 2018, Journal of High Energy Physics.
[45] S. Dubovsky,et al. TT¯$$ T\overline{T} $$ partition function from topological gravity , 2018, Journal of High Energy Physics.
[46] D. Kutasov,et al. Entanglement beyond AdS , 2018, Nuclear Physics B.
[47] G. Bonelli,et al. TT¯$$ T\overline{T} $$ -deformations in closed form , 2018, Journal of High Energy Physics.
[48] A. Sfondrini,et al. Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.
[49] H. Verlinde,et al. Moving the CFT into the bulk with TT¯$$ T\overline{T} $$ , 2018 .
[50] O. Aharony,et al. The TT¯$$ T\overline{T} $$ deformation at large central charge , 2018, 1803.00100.
[51] J. Cardy. The TT¯$$ T\overline{T} $$ deformation of quantum field theory as random geometry , 2018, Journal of High Energy Physics.
[52] D. Kutasov,et al. Holography Beyond AdS , 2017, Nuclear Physics B.
[53] Monica Guica. An integrable Lorentz-breaking deformation of two-dimensional CFTs , 2017, SciPost Physics.
[54] O. Aharony,et al. The T T deformation at large central charge , 2018 .
[55] J. Cardy. The T T deformation of quantum field theory as random geometry , 2018 .
[56] H. Verlinde,et al. Moving the CFT into the bulk with T (cid:22) T , 2018 .
[57] S. Dubovsky,et al. T (cid:22) T partition function from topological gravity , 2018 .
[58] Valentino F. Foit,et al. T (cid:22) T type deformation in the presence of a boundary , 2018 .
[59] S. Datta,et al. TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed partition functions , 2018, Journal of High Energy Physics.
[60] G. Bonelli,et al. T ¯ T -deformations in closed form , 2018 .
[61] A. Bzowski,et al. The holographic interpretation of JT̄-deformed CFTs , 2018 .
[62] D. Marolf,et al. Cutoff AdS 3 versus the T T deformation , 2018 .
[63] M. Tierz,et al. Large N phase transition in TT -deformed 2d Yang–Mills theory on the sphere , 2018 .
[65] G. Giribet. TT¯$$ T\overline{T} $$-deformations, AdS/CFT and correlation functions , 2017, 1711.02716.
[66] Vasudev Shyam. Background independent holographic dual to TT¯$$ T\overline{T} $$ deformed CFT with large central charge in 2 dimensions , 2017, 1707.08118.
[67] D. Kutasov,et al. A solvable irrelevant deformation of AdS3/CFT2 , 2017, 1707.05800.
[68] S. Dubovsky,et al. Asymptotic fragility, near AdS2 holography and TT¯$$ T\overline{T} $$ , 2017, 1706.06604.
[69] E. Witten,et al. More on supersymmetric and 2d analogs of the SYK model , 2017, 1706.05362.
[70] G. Turiaci,et al. Towards a 2d QFT analog of the SYK model , 2017, 1701.00528.
[71] F. A. Smirnov,et al. On space of integrable quantum field theories , 2016, 1608.05499.
[72] Vasudev Shyam. Background independent holographic dual to T ¯ T deformed CFT with large central charge in 2 dimensions , 2017 .
[73] S. Dubovsky,et al. Asymptotic fragility, near AdS 2 holography and T (cid:22) T , 2017 .
[74] A. Cavaglià,et al. TT¯-deformed 2D quantum field theories , 2016, 1608.05534.
[75] R. Tateo,et al. T T-deformed 2D quantum eld theories , 2016 .
[76] J. Cardy. Quantum quenches to a critical point in one dimension: some further results , 2015, 1507.07266.
[77] S. Dubovsky,et al. Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation , 2014 .
[78] S. Dubovsky,et al. Natural tuning: towards a proof of concept , 2013, 1305.6939.
[79] R. Flauger,et al. Solving the simplest theory of quantum gravity , 2012, 1205.6805.
[80] K. Sreenivasan,et al. Lessons from hydrodynamic turbulence , 2006 .
[81] S. Lukyanov,et al. Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation , 1996, hep-th/9604044.
[82] S. Lukyanov,et al. Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz , 1994, hep-th/9412229.
[83] T. Ortín,et al. Asymptotic Density of States of p-BRANES , 1992 .
[84] M. Duff,et al. Semiclassical quantization of the supermembrane , 1988 .
[85] J. Cardy. Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .
[86] G. Venturi,et al. Are hadrons strings? , 1975 .
[87] A. Hanson,et al. New Approach to Field Theory , 1973 .