KdV charges in TTbar theories and new models with super-Hagedorn behavior

Two-dimensional CFTs and integrable models have an infinite set of conserved KdV higher spin currents. These currents can be argued to remain conserved under the T\bar{T}TT‾ deformation and its generalizations. We determine the flow equations the KdV charges obey under the T\bar{T}TT‾ deformation: they behave as probes “riding the Burgers flow” of the energy eigenvalues. We also study a Lorentz-breaking T_{s+1}\bar{T}Ts+1T‾ deformation built from a KdV current and the stress tensor, and find a super-Hagedorn growth of the density of states.

[1]  Ruben Monten,et al.  T ¯ T and the mirage of a bulk cutoff , 2021 .

[2]  R. Rashkov On some (integrable) structures in low-dimensional holography , 2019, Nuclear Physics B.

[3]  Keun-Young Kim,et al.  Entanglement and Rényi entropy of multiple intervals in TT¯ -deformed CFT and holography , 2019, Physical Review D.

[4]  Kentaroh Yoshida,et al.  Gravitational perturbations as $T\bar{T}$-deformations in 2D dilaton gravity systems. , 2019, 1906.03865.

[5]  A. Sfondrini,et al.  On TT¯ deformations and supersymmetry , 2019 .

[6]  S. Frolov TTbar deformation and the light-cone gauge , 2019, 1905.07946.

[7]  Y. Nakayama Holographic dual of conformal field theories with very special TJ¯ deformations , 2019, Physical Review D.

[8]  Yunfeng Jiang arXiv : Lectures on solvable irrelevant deformations of 2d quantum field theory , 2019 .

[9]  Yunfeng Jiang Lectures on solvable irrelevant deformations of 2d quantum field theory , 2019, 1904.13376.

[10]  Toshihiro Ota Comments on holographic entanglements in cutoff AdS , 2019, 1904.06930.

[11]  Y. Nomura,et al.  Comments on holographic entanglement entropy in TT deformed conformal field theories , 2019, Physical Review D.

[12]  A. Banerjee,et al.  Entanglement entropy for TT deformed CFT in general dimensions , 2019, Nuclear Physics B.

[13]  S. Datta,et al.  Sphere partition functions & cut-off AdS , 2019, Journal of High Energy Physics.

[14]  K. Sfetsos,et al.  Integrable Lorentz-breaking deformations and RG flows , 2019, 1902.05407.

[15]  Monica Guica On correlation functions in JT¯-deformed CFTs , 2019, Journal of Physics A: Mathematical and Theoretical.

[16]  A. Sfondrini,et al.  Integrable S matrix, mirror TBA and spectrum for the stringy AdS3 × S3 × S3 × S1 WZW model , 2018, Journal of High Energy Physics.

[17]  Yuan Sun,et al.  Note on the Rényi entropy of 2D perturbed fermions , 2019, Physical Review D.

[18]  M. M. Sheikh-Jabbari,et al.  Holographic integration of TT¯$$ T\overline{T} $$ & JT¯$$ J\overline{T} $$ via O(d, d) , 2018, Journal of High Energy Physics.

[19]  M. Lashkevich,et al.  The complex sinh-Gordon model: form factors of descendant operators and current-current perturbations , 2018, Journal of High Energy Physics.

[20]  Y. Nakayama Very special TJ¯ deformed CFT , 2018, Physical Review D.

[21]  S. Sethi,et al.  Supersymmetry and TT¯$$ T\overline{T} $$ deformations , 2018, Journal of High Energy Physics.

[22]  A. Sfondrini,et al.  On TT¯$$ T\overline{T} $$ deformations and supersymmetry , 2018, Journal of High Energy Physics.

[23]  M. Tierz,et al.  Large N phase transition in TT¯$$ T\overline{T} $$ -deformed 2d Yang-Mills theory on the sphere , 2018, Journal of High Energy Physics.

[24]  R. Conti,et al.  The TT¯$$ \mathrm{T}\overline{\mathrm{T}} $$ perturbation and its geometric interpretation , 2018, Journal of High Energy Physics.

[25]  Soumangsu Chakraborty Wilson loop in a TT‾ like deformed CFT2 , 2018, Nuclear Physics B.

[26]  O. Aharony,et al.  Modular covariance and uniqueness of JT¯$$ J\overline{T} $$ deformed CFTs , 2018, Journal of High Energy Physics.

[27]  O. Aharony,et al.  Modular invariance and uniqueness of TT¯$$ T\overline{T} $$ deformed CFT , 2018, Journal of High Energy Physics.

[28]  Thomas Hartman,et al.  Holography at finite cutoff with a T2 deformation , 2018, Journal of High Energy Physics.

[29]  William Cottrell,et al.  Comments on TT¯ double trace deformations and boundary conditions , 2018, Physics Letters B.

[30]  M. Mezei,et al.  Solving a family of T T̄ -like theories , 2019 .

[31]  S. Sethi,et al.  Supersymmetry and T T deformations , 2019 .

[32]  O. Aharony,et al.  Modular covariance and uniqueness of J ¯ T deformed CFTs , 2019 .

[33]  M. M. Sheikh-Jabbari,et al.  Holographic integration of T T̄ & JT̄ via O ( d , d ) , 2019 .

[34]  Yunfeng Jiang Expectation value of TT operator in curved spacetimes , 2019 .

[35]  Chanyong Park Holographic entanglement entropy in cutoff AdS , 2018, International Journal of Modern Physics A.

[36]  Vasudev Shyam Finite cutoff AdS5 holography and the generalized gradient flow , 2018, Journal of High Energy Physics.

[37]  S. Dubovsky,et al.  Undressing confining flux tubes with TT¯ , 2018, Physical Review D.

[38]  S. Datta,et al.  TT bardeformed partition functions , 2018 .

[39]  R. Conti,et al.  Generalised Born-Infeld models, Lax operators and the TT¯$$ \mathrm{T}\overline{\mathrm{T}} $$ perturbation , 2018, Journal of High Energy Physics.

[40]  Valentino F. Foit,et al.  TT¯$$ T\overline{T} $$ type deformation in the presence of a boundary , 2018, Journal of High Energy Physics.

[41]  Wei Song,et al.  Strings on warped AdS3 via TJ¯$$ \mathrm{T}\overline{\mathrm{J}} $$ deformations , 2018, Journal of High Energy Physics.

[42]  S. Datta,et al.  TT¯$$ T\overline{T} $$ deformed partition functions , 2018, Journal of High Energy Physics.

[43]  William Donnelly,et al.  Entanglement entropy and $T \overline{T}$ deformation , 2018, 1806.07444.

[44]  A. Sfondrini,et al.  Integrable spin chain for stringy Wess-Zumino-Witten models , 2018, Journal of High Energy Physics.

[45]  S. Dubovsky,et al.  TT¯$$ T\overline{T} $$ partition function from topological gravity , 2018, Journal of High Energy Physics.

[46]  D. Kutasov,et al.  Entanglement beyond AdS , 2018, Nuclear Physics B.

[47]  G. Bonelli,et al.  TT¯$$ T\overline{T} $$ -deformations in closed form , 2018, Journal of High Energy Physics.

[48]  A. Sfondrini,et al.  Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.

[49]  H. Verlinde,et al.  Moving the CFT into the bulk with TT¯$$ T\overline{T} $$ , 2018 .

[50]  O. Aharony,et al.  The TT¯$$ T\overline{T} $$ deformation at large central charge , 2018, 1803.00100.

[51]  J. Cardy The TT¯$$ T\overline{T} $$ deformation of quantum field theory as random geometry , 2018, Journal of High Energy Physics.

[52]  D. Kutasov,et al.  Holography Beyond AdS , 2017, Nuclear Physics B.

[53]  Monica Guica An integrable Lorentz-breaking deformation of two-dimensional CFTs , 2017, SciPost Physics.

[54]  O. Aharony,et al.  The T T deformation at large central charge , 2018 .

[55]  J. Cardy The T T deformation of quantum field theory as random geometry , 2018 .

[56]  H. Verlinde,et al.  Moving the CFT into the bulk with T (cid:22) T , 2018 .

[57]  S. Dubovsky,et al.  T (cid:22) T partition function from topological gravity , 2018 .

[58]  Valentino F. Foit,et al.  T (cid:22) T type deformation in the presence of a boundary , 2018 .

[59]  S. Datta,et al.  TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformed partition functions , 2018, Journal of High Energy Physics.

[60]  G. Bonelli,et al.  T ¯ T -deformations in closed form , 2018 .

[61]  A. Bzowski,et al.  The holographic interpretation of JT̄-deformed CFTs , 2018 .

[62]  D. Marolf,et al.  Cutoff AdS 3 versus the T T deformation , 2018 .

[63]  M. Tierz,et al.  Large N phase transition in TT -deformed 2d Yang–Mills theory on the sphere , 2018 .

[64]  B. Bonn T T , 2018 .

[65]  G. Giribet TT¯$$ T\overline{T} $$-deformations, AdS/CFT and correlation functions , 2017, 1711.02716.

[66]  Vasudev Shyam Background independent holographic dual to TT¯$$ T\overline{T} $$ deformed CFT with large central charge in 2 dimensions , 2017, 1707.08118.

[67]  D. Kutasov,et al.  A solvable irrelevant deformation of AdS3/CFT2 , 2017, 1707.05800.

[68]  S. Dubovsky,et al.  Asymptotic fragility, near AdS2 holography and TT¯$$ T\overline{T} $$ , 2017, 1706.06604.

[69]  E. Witten,et al.  More on supersymmetric and 2d analogs of the SYK model , 2017, 1706.05362.

[70]  G. Turiaci,et al.  Towards a 2d QFT analog of the SYK model , 2017, 1701.00528.

[71]  F. A. Smirnov,et al.  On space of integrable quantum field theories , 2016, 1608.05499.

[72]  Vasudev Shyam Background independent holographic dual to T ¯ T deformed CFT with large central charge in 2 dimensions , 2017 .

[73]  S. Dubovsky,et al.  Asymptotic fragility, near AdS 2 holography and T (cid:22) T , 2017 .

[74]  A. Cavaglià,et al.  TT¯-deformed 2D quantum field theories , 2016, 1608.05534.

[75]  R. Tateo,et al.  T T-deformed 2D quantum eld theories , 2016 .

[76]  J. Cardy Quantum quenches to a critical point in one dimension: some further results , 2015, 1507.07266.

[77]  S. Dubovsky,et al.  Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation , 2014 .

[78]  S. Dubovsky,et al.  Natural tuning: towards a proof of concept , 2013, 1305.6939.

[79]  R. Flauger,et al.  Solving the simplest theory of quantum gravity , 2012, 1205.6805.

[80]  K. Sreenivasan,et al.  Lessons from hydrodynamic turbulence , 2006 .

[81]  S. Lukyanov,et al.  Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation , 1996, hep-th/9604044.

[82]  S. Lukyanov,et al.  Integrable structure of conformal field theory, quantum KdV theory and Thermodynamic Bethe Ansatz , 1994, hep-th/9412229.

[83]  T. Ortín,et al.  Asymptotic Density of States of p-BRANES , 1992 .

[84]  M. Duff,et al.  Semiclassical quantization of the supermembrane , 1988 .

[85]  J. Cardy Operator Content of Two-Dimensional Conformally Invariant Theories , 1986 .

[86]  G. Venturi,et al.  Are hadrons strings? , 1975 .

[87]  A. Hanson,et al.  New Approach to Field Theory , 1973 .