Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template

Quasi one-dimensional nanowires possess unique electrical, electronic, thermoelectrical, optical, magnetic and chemical properties, which are different from that of their parent counterpart. The physical properties of nanowires are influenced by the morphology of the nanowires, diameter dependent band gap, carrier density of states etc. Nanowires hold lot of promises for different applications. Basic electronic devices like junction diodes, transistors, FETs and logic gates can be fabricated by using semiconductor and superlattice nanowires. Thermoelectric cooling system can be fabricated by using metallic nanowires. Semiconductor nanowire junctions can be used for different opto-electronic applications. Moreover, periodic arrays of magnetic nanowires hold high potential for recording media application. Nanowires are also potential candidates for sensor and bio-medical applications.In the present article, the physical and chemical properties of nanowires along with their probable applications in different fields have been reviewed in detail. The review also includes highlights of the synthesis of nanowires via porous anodic aluminium oxide template since the technique is simple, cost-effective and a low temperature technique.

[1]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[2]  F. Keller,et al.  Structural Features of Oxide Coatings on Aluminum , 1953 .

[3]  H. Lee,et al.  Magnetic properties and crystal structures of self-ordered ferromagnetic nanowires by ac electroforming , 2002 .

[4]  Yongxiang Li,et al.  Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes , 2000 .

[5]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[6]  K. Habib In situ measurement of oxide film growth on aluminium samples by holographic interferometry , 2001 .

[7]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[8]  Charles M. Lieber,et al.  Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires , 2002 .

[9]  G. Ozin Nanochemistry: Synthesis in diminishing dimensions , 1992 .

[10]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[11]  M. Ghorbani,et al.  Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template , 2005 .

[12]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[13]  Peter K. Dorhout,et al.  Template Synthesis of Near-Monodisperse 1 Microscale Nanofibers and Nanotubules of MoS 2 , 1998 .

[14]  J. Ansermet,et al.  Giant magnetoresistance of nanowires of multilayers , 1994 .

[15]  T. Coyle,et al.  Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates , 1997 .

[16]  K. Shimizu,et al.  Development of porous anodic films on aluminium , 1992 .

[17]  Claude Chappert,et al.  Nanoscale Magnetic Domains in Mesoscopic Magnets , 1996, Science.

[18]  Martin Moskovits,et al.  Nonlithographic nano-wire arrays: fabrication, physics, and device applications , 1996 .

[19]  Ralf B. Wehrspohn,et al.  Highly ordered monocrystalline silver nanowire arrays , 2002 .

[20]  E. Plummer,et al.  Ferromagnetism in cobalt-iron alloy nanowire arrays on W(110) , 2002 .

[21]  S. Piazza,et al.  Influence of initial treatments of aluminium on the morphological features of electrochemically formed alumina membranes , 2003 .

[22]  Donald T. Morelli,et al.  Magnetoresistance of bismuth nanowire arrays: A possible transition from one-dimensional to three-dimensional localization , 1998 .

[23]  C. Chien,et al.  Fabrication and Magnetic Properties of Arrays of Metallic Nanowires , 1993, Science.

[24]  Bernhard Lamprecht,et al.  Optical properties of Ag and Au nanowire gratings , 2001 .

[25]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  K. Ounadjela,et al.  Magnetization processes in nickel and cobalt electrodeposited nanowires , 1997 .

[27]  J. Garnett,et al.  Colours in Metal Glasses, in Metallic Films, and in Metallic Solutions. II , 1906 .

[28]  M. Melloch,et al.  Effects of electron-beam-induced damage on leakage currents in back-gated GaAs/AlGaAs devices , 1993 .

[29]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[30]  Yu-Ming Lin,et al.  Semimetal–semiconductor transition in Bi1−xSbx alloy nanowires and their thermoelectric properties , 2002 .

[31]  Ka Wai Wong,et al.  ELECTRON FIELD EMISSION FROM SILICON NANOWIRES , 1999 .

[32]  Chia-Chun Chen,et al.  Optical characterization of wurtzite gallium nitride nanowires , 2001 .

[33]  J. Ha,et al.  Array of ultraviolet luminescent ZnO nanodots fabricated by pulsed laser deposition using an anodic aluminium oxide template , 2006 .

[34]  Toshiaki Tamamura,et al.  Conditions for Fabrication of Ideally Ordered Anodic Porous Alumina Using Pretextured Al , 2001 .

[35]  Giordano,et al.  Localization and electron-electron interaction effects in thin Bi wires and films. , 1988, Physical review. B, Condensed matter.

[36]  Jae-Young Yu,et al.  Silicon nanowire devices , 2000 .

[37]  Meng Ding,et al.  Observation of valence band electron emission from n-type silicon field emitter arrays , 1999, 1999 57th Annual Device Research Conference Digest (Cat. No.99TH8393).

[38]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[39]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[40]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[41]  Carl V. Brown,et al.  Method for the measurement of the K22 nematic elastic constant , 2003 .

[42]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[43]  Joan M. Redwing,et al.  Template-directed vapor–liquid–solid growth of silicon nanowires , 2002 .

[44]  I. Snook,et al.  Density functional theory study of the relaxation and energy of iron surfaces , 2002 .

[45]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[46]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[47]  Xuesong Shi,et al.  Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates , 2000 .

[48]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[49]  Hao Zeng,et al.  Magnetic localization in transition-metal nanowires , 2000 .

[50]  Yong Peng,et al.  Magnetic nanowire arrays: A study of magneto-optical properties , 2003 .

[51]  D. Aspnes Optical properties of thin films , 1982 .

[52]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[53]  Andrzej Huczko,et al.  Template-based synthesis of nanomaterials , 2000 .

[54]  Wenzhong Shen,et al.  Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique , 2002 .

[55]  Peter C. Searson,et al.  Electrochemical deposition of nickel nanowire arrays in single-crystal mica films , 1999 .

[56]  Di Chen,et al.  Preparation of CdS Single‐Crystal Nanowires by Electrochemically Induced Deposition , 2000 .

[57]  J. L. Costa-Krämer,et al.  Conductance Quantization in Bismuth Nanowires at 4 K , 1997 .

[58]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[59]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[60]  Daniel Ratner,et al.  Nanotechnology: A Gentle Introduction to the Next Big Idea , 2002 .

[61]  G. Thompson,et al.  Mechanism of anodic film growth on aluminium , 1985 .

[62]  R. C. Furneaux,et al.  The formation of controlled-porosity membranes from anodically oxidized aluminium , 1989, Nature.

[63]  G. Stucky,et al.  Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15 , 2000 .

[64]  Chun-Guey Wu,et al.  Conducting Polyaniline Filaments in a Mesoporous Channel Host , 1994, Science.

[65]  Kamruzzaman,et al.  Fabrication and characterization of nickel nanowires deposited on metal substrate , 2003 .

[66]  Yu-Ming Lin,et al.  Bismuth nanowire arrays: Synthesis and galvanomagnetic properties , 2000 .

[67]  C. Chien Granular magnetic solids (invited) , 1991 .

[68]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[69]  J. Gibson,et al.  Reading and Writing with Electron Beams , 1997 .

[70]  H. Zeng,et al.  Magnetic properties of self-assembled Co nanowires of varying length and diameter , 2000, Journal of Applied Physics.

[71]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[72]  Younan Xia,et al.  A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10−30 nm , 2000 .

[73]  Guanghou Wang,et al.  Synthesis and characterization of rutile SnO2 nanorods , 2001 .

[74]  Muller,et al.  Quantization effects in the conductance of metallic contacts at room temperature. , 1996, Physical review. B, Condensed matter.

[75]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[76]  Jackie Y. Ying,et al.  Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process , 1998 .

[77]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[78]  Manuel Cardona,et al.  Light Scattering in Solids , 2000 .

[79]  Hao‐Li Zhang,et al.  Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film , 2000 .

[80]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[81]  Muller,et al.  Conductance and supercurrent discontinuities in atomic-scale metallic constrictions of variable width. , 1992, Physical review letters.

[82]  F. Cerrina,et al.  A Path to Nanolithography , 1996 .

[83]  David J. Sellmyer,et al.  TOPICAL REVIEW: Magnetism of Fe, Co and Ni nanowires in self-assembled arrays , 2001 .

[84]  Xinyi Zhang,et al.  Fabrication and characterization of highly ordered Au nanowire arrays , 2001 .

[85]  D. Chakravorty,et al.  Nanowire formation in a polymeric film , 2000 .

[86]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[87]  Charles R. Martin,et al.  Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell−Garnett Limit , 1997 .

[88]  Baolin Wang,et al.  Structures and electronic properties of ultrathin titanium nanowires , 2001 .

[89]  Joan M. Redwing,et al.  Diameter‐Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes , 2005 .

[90]  J. Kollár,et al.  The surface energy of metals , 1998 .

[91]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[92]  George E. Possin,et al.  A method for forming very small diameter wires (Notes) , 1970 .

[93]  Charles M. Lieber,et al.  Gallium Nitride Nanowire Nanodevices , 2002 .

[94]  T. Kanno,et al.  Structural features of crystalline anodic alumina films , 2001 .

[95]  Yu-Ming Lin,et al.  Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires , 2000 .

[96]  S. Matsui,et al.  Focused ion beam applications to solid state devices , 1996 .

[97]  Xiaodong Ma,et al.  Preparation and characterization of polyvinyl alcohol–selenide nanocomposites at room temperature , 2002 .

[98]  H. Zeng,et al.  Size dependence of the magnetic properties of electrochemically self-assembled Fe quantum dots , 2000 .

[99]  G. Patermarakis,et al.  Effect of the structure of porous anodic Al2O3 films on the mechanism of their hydration and pore closure during hydrothermal treatment , 1993 .

[100]  H. Terryn,et al.  Investigation of anodic aluminium oxide layers by electrochemical impedance spectroscopy , 1990 .

[101]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution , 1997 .

[102]  E. Bakkers,et al.  Increase of the photoluminescence intensity of InP nanowires by photoassisted surface passivation. , 2005, Journal of the American Chemical Society.

[103]  B. Johansson,et al.  Surface energy and magnetism of the 3d metals , 1994 .

[104]  J. Cheon,et al.  Size-Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration , 2001 .

[105]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[106]  Frank Müller,et al.  Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina , 1998 .

[107]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[108]  K. Chatterjee,et al.  Plasmon resonance absorption in sulfide-coated gold nanorods , 2006 .

[109]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[110]  Charles R. Martin,et al.  Template Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape , 1994 .

[111]  F. C. Loh,et al.  Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone) , 1996 .

[112]  神前 熈,et al.  R. H. Doremus, B. M. Roberts and David Turnbull: Growth and Perfection of Crystals, John Wiley and Sons, New York 1958, 609頁, 22×29cm, 5000円. , 1959 .

[113]  Martin Moskovits,et al.  Magnetic properties of Fe deposited into anodic aluminum oxide pores as a function of particle size , 1991 .

[114]  Polarization and Fowler–Nordheim tunneling in anodized Al–Al2O3–Au diodes , 2000 .

[115]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[116]  Peter K. Dorhout,et al.  Sol−Gel Template Synthesis of Semiconductor Nanostructures , 1997 .

[117]  Peidong Yang,et al.  Germanium Nanowire Growth via Simple Vapor Transport , 2000 .

[118]  Y. Qian,et al.  Oleate vesicle template route to silver nanowires , 2001 .

[119]  Jena,et al.  Magnetism and local order: Ab initio tight-binding theory. , 1989, Physical review. B, Condensed matter.

[120]  Ge Yi,et al.  Single crystal superconductor nanowires by electrodeposition , 1999 .

[121]  R. Piner,et al.  An improved method to strip aluminum from porous anodic alumina films , 2003 .

[122]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[123]  T. C. Downie,et al.  Anodic oxide films on aluminum , 1969 .

[124]  E. Dalchiele,et al.  Silver nanowire arrays electrochemically grown into nanoporous anodic alumina templates , 2006 .

[125]  M. Dresselhaus,et al.  Infrared absorption in bismuth nanowires resulting from quantum confinement , 2002 .

[126]  M S Sander,et al.  Electrodeposition of ordered Bi2Te3 nanowire arrays. , 2001, Journal of the American Chemical Society.

[127]  Herbert Herman,et al.  Treatise on Materials Science and Technology , 1979 .

[128]  T. Thornton,et al.  One-dimensional transport and the quantisation of the ballistic resistance , 1988 .

[129]  Glenn O. Mallory,et al.  Electroless plating : fundamentals and applications , 1990 .

[130]  C. Prater,et al.  Nanowire Array Composites , 1994, Science.

[131]  Jinhee Kim,et al.  Schottky diodes based on a single GaN nanowire , 2002 .

[132]  D. Lyons,et al.  Tailoring the Optical Properties of Silicon Nanowire Arrays through Strain , 2002 .

[133]  M. Dresselhaus,et al.  Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays , 1998 .

[134]  D. Turnbull,et al.  Growth and perfection of crystals : proceedings of an International Conference on Crystal Growth, held at Cooperstown, New York on August 27-29, 1958 , 1958 .

[135]  Guosheng Cheng,et al.  Large-scale synthesis of single crystalline gallium nitride nanowires , 1999 .

[136]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[137]  V. Parkhutik,et al.  Theoretical modelling of porous oxide growth on aluminium , 1992 .

[138]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[139]  Hao Zeng,et al.  Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays , 2002 .

[140]  S. Chou,et al.  Study of nanoscale magnetic structures fabricated using electron‐beam lithography and quantum magnetic disk , 1994 .

[141]  Jijun Zhao,et al.  Quantum transport properties of ultrathin silver nanowires , 2002, cond-mat/0209535.

[142]  J. Ying,et al.  Processing and Characterization of Single-Crystalline Ultrafine Bismuth Nanowires , 1999 .

[143]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[144]  C. M. Thrush,et al.  Thermoelectric power of bismuth nanocomposites. , 2002, Physical review letters.

[145]  Joseph P. Heremans,et al.  Thermoelectric power of bismuth nanowires , 1999 .

[146]  Kornelius Nielsch,et al.  Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina , 1998 .

[147]  R. J. Tonucci,et al.  Nanochannel Array Glass , 1992, Science.

[148]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[149]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[150]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[151]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[152]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[153]  C. R. Martin,et al.  Membrane-Based Synthesis of Nanomaterials , 1996 .

[154]  J. Duvail,et al.  Fabrication and properties of organic and metal nanocylinders in nanoporous membranes , 1999 .

[155]  J. Vance,et al.  Growth and Perfection of Crystals. , 1959 .

[156]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[157]  Albert Fert,et al.  Giant magnetoresistance in magnetic multilayered nanowires , 1994 .

[158]  Peter C. Searson,et al.  Structural and magneto-transport properties of electrodeposited bismuth nanowires , 1998 .

[159]  Charles M. Lieber,et al.  Doping and Electrical Transport in Silicon Nanowires , 2000 .

[160]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[161]  M. Dresselhaus,et al.  Electronic transport properties of single-crystal bismuth nanowire arrays , 2000 .