A selectivity filter at the intracellular end of the acid-sensing ion channel pore

Increased extracellular proton concentrations during neurotransmission are converted to excitatory sodium influx by acid-sensing ion channels (ASICs). 10-fold sodium/potassium selectivity in ASICs has long been attributed to a central constriction in the channel pore, but experimental verification is lacking due to the sensitivity of this structure to conventional manipulations. Here, we explored the basis for ion selectivity by incorporating unnatural amino acids into the channel, engineering channel stoichiometry and performing free energy simulations. We observed no preference for sodium at the “GAS belt” in the central constriction. Instead, we identified a band of glutamate and aspartate side chains at the lower end of the pore that enables preferential sodium conduction. DOI: http://dx.doi.org/10.7554/eLife.24630.001

[1]  E. Gouaux,et al.  X-ray structures define human P2X3 receptor gating cycle and antagonist action , 2016, Nature.

[2]  Youjia Hu,et al.  Two di-leucine motifs regulate trafficking and function of mouse ASIC2a , 2016, Molecular Brain.

[3]  A. Baron,et al.  Pharmacology of acid-sensing ion channels – Physiological and therapeutical perspectives , 2015, Neuropharmacology.

[4]  S. Gründer,et al.  Biophysical properties of acid-sensing ion channels (ASICs) , 2015, Neuropharmacology.

[5]  M. Giladi,et al.  Sodium recognition by the Na+/Ca2+ exchanger in the outward-facing conformation , 2014, Proceedings of the National Academy of Sciences.

[6]  L. Palmer,et al.  Ion conduction and selectivity in acid-sensing ion channel 1 , 2014, The Journal of general physiology.

[7]  Ethan B. Van Arnam,et al.  In Vivo Incorporation of Non‐canonical Amino Acids by Using the Chemical Aminoacylation Strategy: A Broadly Applicable Mechanistic Tool , 2014, Chembiochem : a European journal of chemical biology.

[8]  M. Welsh,et al.  Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala , 2014, Proceedings of the National Academy of Sciences.

[9]  V. Aroniadou-Anderjaska,et al.  ASIC1a Activation Enhances Inhibition in the Basolateral Amygdala and Reduces Anxiety , 2014, The Journal of Neuroscience.

[10]  Toby W Allen,et al.  Ion conduction and conformational flexibility of a bacterial voltage-gated sodium channel , 2014, Proceedings of the National Academy of Sciences.

[11]  E. Gouaux,et al.  X-Ray Structure of Acid-Sensing Ion Channel 1–Snake Toxin Complex Reveals Open State of a Na+-Selective Channel , 2014, Cell.

[12]  Xiang-ming Zha,et al.  Three distinct motifs within the C-terminus of acid-sensing ion channel 1a regulate its surface trafficking , 2013, Neuroscience.

[13]  B. Roux,et al.  Simulations of anionic lipid membranes: development of interaction-specific ion parameters and validation using NMR data. , 2013, The journal of physical chemistry. B.

[14]  B. Falkenburger,et al.  High Ca2+ permeability of a peptide-gated DEG/ENaC from Hydra , 2012, The Journal of General Physiology.

[15]  E. Gouaux,et al.  Structural plasticity and dynamic selectivity of acid-sensing ion channel–spider toxin complexes , 2012, Nature.

[16]  L. Dang,et al.  Molecular mechanism of specific ion interactions between alkali cations and acetate anion in aqueous solution: a molecular dynamics study. , 2012, The journal of physical chemistry. B.

[17]  M. Hattori,et al.  Molecular mechanism of ATP binding and ion channel activation in P2X receptors , 2012, Nature.

[18]  M. Carattino,et al.  Contribution of Residues in Second Transmembrane Domain of ASIC1a Protein to Ion Selectivity* , 2012, The Journal of Biological Chemistry.

[19]  J. Galpin,et al.  Contributions of Counter-Charge in a Potassium Channel Voltage-Sensor Domain , 2011, Nature chemical biology.

[20]  Tianbo Li,et al.  Outlines of the pore in open and closed conformations describe the gating mechanism of ASIC1. , 2011, Nature communications.

[21]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[22]  Tianbo Li,et al.  Asp433 in the closing gate of ASIC1 determines stability of the open state without changing properties of the selectivity filter or Ca2+ block , 2011, The Journal of general physiology.

[23]  A. Kalinichev,et al.  Metal cation complexation with natural organic matter in aqueous solutions: molecular dynamics simulations and potentials of mean force. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[24]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[25]  B. Roux Exploring the ion selectivity properties of a large number of simplified binding site models. , 2010, Biophysical journal.

[26]  Donald G. Truhlar,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2010 .

[27]  Matthew A. Howard,et al.  The Amygdala Is a Chemosensor that Detects Carbon Dioxide and Acidosis to Elicit Fear Behavior , 2009, Cell.

[28]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[29]  Fang Yu,et al.  Inherent Dynamics of the Acid-Sensing Ion Channel 1 Correlates with the Gating Mechanism , 2009, PLoS biology.

[30]  Benoît Roux,et al.  Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms. , 2008, Journal of molecular biology.

[31]  Eric Gouaux,et al.  Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. , 2007, Nature.

[32]  H. Lester,et al.  Chemical-scale studies on the role of a conserved aspartate in preorganizing the agonist binding site of the nicotinic acetylcholine receptor. , 2007, Biochemistry.

[33]  Toby W Allen,et al.  Molecular dynamics - potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels. , 2006, Biophysical chemistry.

[34]  L. Schild,et al.  A Gating Mutation in the Internal Pore of ASIC1a* , 2006, Journal of Biological Chemistry.

[35]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[36]  E. Mccleskey,et al.  Acid‐Sensing Ion Channels , 2005 .

[37]  B. Roux,et al.  Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands , 2004, Nature.

[38]  M. Welsh,et al.  Neuroprotection in Ischemia Blocking Calcium-Permeable Acid-Sensing Ion Channels , 2004, Cell.

[39]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[40]  Francisco Bezanilla,et al.  A fluorophore attached to nicotinic acetylcholine receptor βM2 detects productive binding of agonist to the αδ site , 2004 .

[41]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[42]  John A. Wemmie,et al.  The Acid-Activated Ion Channel ASIC Contributes to Synaptic Plasticity, Learning, and Memory , 2002, Neuron.

[43]  L. Schild,et al.  Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. , 2002, Physiological reviews.

[44]  L. Schild,et al.  Permeability Properties of Enac Selectivity Filter Mutants , 2001, The Journal of general physiology.

[45]  S. Sheng,et al.  Second Transmembrane Domains of ENaC Subunits Contribute to Ion Permeation and Selectivity* , 2001, The Journal of Biological Chemistry.

[46]  B. Roux,et al.  Energetics of ion conduction through the K+ channel , 2001, Nature.

[47]  M. Lazdunski,et al.  Nonsteroid Anti-Inflammatory Drugs Inhibit Both the Activity and the Inflammation-Induced Expression of Acid-Sensing Ion Channels in Nociceptors , 2001, The Journal of Neuroscience.

[48]  J. Mainland,et al.  Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter , 2001, Nature Neuroscience.

[49]  Jinqing Li,et al.  Characterization of the Selectivity Filter of the Epithelial Sodium Channel* , 2000, The Journal of Biological Chemistry.

[50]  K. Keyser,et al.  Charged residues in the M2 region of α-hENaC play a role in channel conductance , 2000 .

[51]  P. Snyder,et al.  A Pore Segment in DEG/ENaC Na+ Channels* , 1999, The Journal of Biological Chemistry.

[52]  L. Schild,et al.  Identification of a highly conserved sequence at the N-terminus of the epithelial Na+ channel α subunit involved in gating , 1999, Pflügers Archiv.

[53]  H. Lester,et al.  INCORPORATION OF ESTERS INTO PROTEINS : IMPROVED SYNTHESIS OF HYDROXYACYL TRNAS , 1999 .

[54]  L. Schild,et al.  On the Molecular Basis of Ion Permeation in the Epithelial Na+ Channel , 1999, The Journal of general physiology.

[55]  L. Schild,et al.  A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  E. Oelkers,et al.  Experimental determination of aqueous sodium-acetate dissociation constants at temperatures from 20 to 240°C , 1998 .

[57]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[58]  M. Lazdunski,et al.  A proton-gated cation channel involved in acid-sensing , 1997, Nature.

[59]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[60]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[61]  M. Lazdunski,et al.  Functional Degenerin-containing Chimeras Identify Residues Essential for Amiloride-sensitive Na Channel Function (*) , 1995, The Journal of Biological Chemistry.

[62]  D. Beglov,et al.  Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations , 1994 .

[63]  Monica Driscoll,et al.  A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans , 1994, Nature.

[64]  Peter A. Kollman,et al.  FREE ENERGY CALCULATIONS : APPLICATIONS TO CHEMICAL AND BIOCHEMICAL PHENOMENA , 1993 .

[65]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[66]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[67]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[68]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[69]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[70]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[71]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[72]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[73]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[74]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[75]  J. Davis,et al.  Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphatidylcholine. , 1979, Biophysical journal.

[76]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[77]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[78]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[79]  S. Chan,et al.  Thermal phase transitions in deuterated lecithin bilayers. , 1975, Chemistry and physics of lipids.

[80]  C. V. Krishnan,et al.  Studies of hydrophobic bonding in aqueous alcohols: Enthalpy measurements and model calculations , 1973 .

[81]  B. Hille The Permeability of the Sodium Channel to Metal Cations in Myelinated Nerve , 1972, The Journal of general physiology.

[82]  Arthur Mitchell Contribution to the Statistics of Pneumonia , 1857, Edinburgh medical journal.

[83]  H. Lester,et al.  A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[84]  K. Keyser,et al.  Charged residues in the M2 region of alpha-hENaC play a role in channel conductance. , 2000, American journal of physiology. Cell physiology.

[85]  H. Lester,et al.  In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. , 1998, Methods in enzymology.

[86]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[87]  THE JOURNAL OF PHYSICAL CHEMISTRY B , 2022 .