Fast terminal sliding‐mode finite‐time tracking control with differential evolution optimization algorithm using integral chain differentiator in uncertain nonlinear systems

This paper presents a fast terminal sliding‐mode tracking control for a class of uncertain nonlinear systems with unknown parameters and system states combined with time‐varying disturbances. Fast terminal sliding‐mode finite‐time tracking systems based on differential evolution algorithms incorporate an integral chain differentiator (ICD) to feedback systems for the estimation of the unknown system states. The differential evolution optimization algorithm using ICD is also applied to a tracking controller, which provides unknown parametric estimation in the limitation of unknown system states for trajectory tracking. The ICD in the tracking systems strengthens the tracking controller robustness for the disturbances by filtering noises. As a powerful finite‐time control effort, the fast terminal sliding‐mode tracking control guarantees that all tracking errors rapidly converge to the origin. The effectiveness of the proposed approach is verified via simulations, and the results exhibit high‐precision output tracking performance in uncertain nonlinear systems.

[1]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[2]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[3]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[4]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[5]  S. Bhat,et al.  Finite-time stability of homogeneous systems , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[6]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[7]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[8]  Zhihong Man,et al.  Tracking precision analysis of terminal sliding mode control systems with saturation functions , 2000 .

[9]  Zhong-Ping Jiang,et al.  Finite-Time Stabilization of Nonlinear Systems With Parametric and Dynamic Uncertainties , 2006, IEEE Transactions on Automatic Control.

[10]  Geng Yang,et al.  Finite-Time-Convergent Differentiator Based on Singular Perturbation Technique , 2007, IEEE Transactions on Automatic Control.

[11]  Shihua Li,et al.  Global set stabilization of the spacecraft attitude control problem based on quaternion , 2010 .

[12]  Amit Konar,et al.  Cooperative multi-robot path planning using differential evolution , 2009, J. Intell. Fuzzy Syst..

[13]  Ivan Petrović,et al.  Applying Optimal Sliding Mode Based Load-Frequency Control in Power Systems with Controllable Hydro Power Plants , 2010 .

[14]  Teresa Orlowska-Kowalska,et al.  Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors , 2010, IEEE Transactions on Industrial Electronics.

[15]  Leonid M. Fridman,et al.  A Hybrid Robust Non-Homogeneous Finite-Time Differentiator , 2011, IEEE Transactions on Automatic Control.

[16]  Pinar Civicioglu,et al.  A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms , 2013, Artificial Intelligence Review.

[17]  Jinkun Liu,et al.  Advanced Sliding Mode Control for Mechanical Systems , 2011 .

[18]  W. Chiang,et al.  Linear Matrix Inequality Conditions of Nonlinear Systems by Genetic Algorithm-based H ∞ Adaptive Fuzzy Sliding Mode Controller , 2011 .

[19]  Athanasios V. Vasilakos,et al.  On Convergence of Differential Evolution Over a Class of Continuous Functions With Unique Global Optimum , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Changchun Hua,et al.  Parameter identification of commensurate fractional-order chaotic system via differential evolution , 2012 .

[21]  Marte Gutierrez,et al.  Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA) , 2012 .

[22]  Kalyanmoy Deb,et al.  Improving differential evolution through a unified approach , 2013, J. Glob. Optim..

[24]  Honghai Liu,et al.  Adaptive Sliding-Mode Control for Nonlinear Active Suspension Vehicle Systems Using T–S Fuzzy Approach , 2013, IEEE Transactions on Industrial Electronics.

[25]  Amit Banerjee,et al.  A comparative analysis of particle swarm optimization and differential evolution algorithms for parameter estimation in nonlinear dynamic systems , 2014 .

[26]  Gorazd Stumberger,et al.  Differential-Evolution-Based Parameter Identification of a Line-Start IPM Synchronous Motor , 2014, IEEE Transactions on Industrial Electronics.

[27]  Abdesselem Boulkroune,et al.  Design of Fractional-order Sliding Mode Controller (FSMC) for a class of Fractional-order Non-linear Commensurate Systems using a Particle Swarm Optimization (PSO) Algorithm , 2014 .

[28]  Quanmin Zhu,et al.  Position synchronised control of multiple robotic manipulators based on integral sliding mode , 2014, Int. J. Syst. Sci..

[29]  M. N. Harmas,et al.  Design of a Robust and Indirect Adaptive Fuzzy Sliding Mode Power System Stabilizer Using Particle Swarm Optimization , 2014 .

[30]  Chutiphon Pukdeboon,et al.  Inverse optimal sliding mode control of spacecraft with coupled translation and attitude dynamics , 2015, Int. J. Syst. Sci..

[31]  Qiu Zhicheng,et al.  Fuzzy fast terminal sliding mode vibration control of a two-connected flexible plate using laser sensors , 2016 .

[32]  Irfan Yazici,et al.  Fast and robust voltage control of DC–DC boost converter by using fast terminal sliding mode controller , 2016 .

[33]  Mir Mohammad Ettefagh,et al.  Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator , 2016 .

[34]  Rajesh Gupta,et al.  Recursive fast terminal sliding mode control in voltage source inverter for a low-voltage microgrid system , 2016 .

[35]  Honglun Wang,et al.  Back-stepping robust trajectory linearization control for hypersonic reentry vehicle via novel tracking differentiator , 2016, J. Frankl. Inst..

[36]  R. K. Patnaik,et al.  Fast adaptive back-stepping terminal sliding mode power control for both the rotor-side as well as grid-side converter of the doubly fed induction generator-based wind farms , 2016 .

[37]  Jing-Jing Xiong,et al.  Global fast dynamic terminal sliding mode control for a quadrotor UAV. , 2017, ISA transactions.