Pressure-induced structural transformations in the low-cristobalite form of AlPO4

Abstract We have investigated the high-pressure behavior of low-cristobalite form of AlPO4 (c-AlPO4) using a combination of Raman scattering, synchrotron powder X-ray diffraction, and classical molecular dynamics simulations. Our experiments indicate that under non-hydrostatic conditions c-AlPO4 initially transforms to a monoclinic phase, which then transforms to the Cmcm phase via an intermediate, disordered structure. In contrast, X-ray diffraction measurements made under hydrostatic conditions show that the ambient structure transforms directly to the Cmcm phase. Our classical molecular dynamics simulations, carried out under hydrostatic conditions, also show that c-AlPO4 directly transforms to the Cmcm phase at ~13 GPa.

[1]  J. Chervin,et al.  Hydrostatic limits of 11 pressure transmitting media , 2009 .

[2]  S. Sharma,et al.  High pressure raman spectroscopic study of low-cristobalite GaPO4 , 2008 .

[3]  S. Scandolo,et al.  Tuning oxygen packing in silica by nonhydrostatic pressure. , 2007, Physical review letters.

[4]  N. Garg,et al.  Classical molecular dynamical simulations of high pressure behavior of alpha cristobalite (SiO2) , 2007 .

[5]  S. Sharma,et al.  Phase transformations of α-cristobalite GaPO4 at pressures up to 52 GPa , 2007 .

[6]  A. M. Saitta,et al.  Six-fold-coordinated phosphorus by oxygen in AlPO4 quartz homeotype under high pressure. , 2007, Nature materials.

[7]  Liping Huang,et al.  Transformation pathways of silica under high pressure , 2006, Nature materials.

[8]  Y. Pitak,et al.  The Effect of Aluminum Phosphate Binder on the Crystallization of Mullite-Silica Fibers , 2004 .

[9]  A. K. Tyagi,et al.  Preparation, phase transition and thermal expansion studies on low-cristobalite type Al1−xGaxPO4 (x=0.0, 0.20, 0.50, 0.80 and 1.00) , 2003 .

[10]  K. Kunc,et al.  First-principles determination of the relative stability of the α and Cmcm structures of AlPO 4 , 2003 .

[11]  J. Tse,et al.  Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite , 2001 .

[12]  W. Mozgawa,et al.  The AIPO4 polymorphs structure in the light of Raman and IR spectroscopy studies , 2000 .

[13]  S. Sikka,et al.  High-pressure x-ray-diffraction study of a-AlPO4 , 2000 .

[14]  W. G. Marshall,et al.  Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2 , 2000, Mineralogical Magazine.

[15]  K. Syassen,et al.  Pressure-induced concurrent transformation to an amorphous and crystalline phase in berlinite-type FePO4 , 1997 .

[16]  J. Tse,et al.  The pressure-induced phase transition of the alpha -cristobalite form of GaPO4 , 1995 .

[17]  R. Hemley,et al.  Raman spectroscopic study of high-pressure phase transitions in cristobalite , 1994 .

[18]  E. Baran Vibrational and electronic spectra of copper(II) chromate , 1994 .

[19]  Winters,et al.  Pressure-induced transformations of the low-cristobalite phase of GaPO4. , 1994, Physical review letters.

[20]  R. Downs,et al.  The pressure behavior of alpha cristobalite , 1994 .

[21]  L. D. DeLoach,et al.  Shock Amorphization of Cristobalite , 1993, Science.

[22]  Chelikowsky,et al.  Structural properties of nine silica polymorphs. , 1992, Physical review. B, Condensed matter.

[23]  J. Tse,et al.  The structure and dynamics of silica polymorphs using a two-body effective potential model , 1991 .

[24]  H. Olijnyk High pressure x‐ray diffraction studies on solid N2 up to 43.9 GPa , 1990 .

[25]  R. Jeanloz,et al.  Memory Glass: An Amorphous Material Formed from AlPO4 , 1990, Science.

[26]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[27]  T. Yagi,et al.  A new, post-stishovite highpressure polymorph of silica , 1989, Nature.

[28]  Hideo Aoki,et al.  New pressure-induced structural transformations in silica obtained by computer simulation , 1989, Nature.

[29]  Aoki,et al.  First-principles interatomic potential of silica applied to molecular dynamics. , 1988, Physical review letters.

[30]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[31]  T. Kajiwara,et al.  Pressure-induced phase transition in Sb2Te3 , 1981 .

[32]  J. Scott,et al.  Raman study of the a- cristobalite phase transition in AIPO 4 , 1978 .

[33]  Jianfeng Huang,et al.  Preparation of a SiC/Cristobalite-AlPO4 Multi-layer Protective Coating on Carbon/Carbon Composites and Resultant Oxidation Kinetics and Mechanism , 2010 .

[34]  Raig,et al.  Crystal structure of the high-pressure monoclinic phase-II of cristobalite , SiO 2 , 2007 .

[35]  V. S. Bakunov,et al.  Deformation of unfired phosphate-bound refractories. Part 3. Deformation of hardened cements on heating and cooling , 2007 .

[36]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[37]  L. W. Frncnn Pressure-induced phase transition in cristobalite: An X-ray powder diffraction study to 4.4 GPa , 1994 .

[38]  W. Smith,et al.  The chemistry and binding properties of aluminium phosphates , 1977 .