Simulations of stellar convection with CO5BOLD

High-resolution images of the solar surface show a granulation pattern of hot rising and cooler downward-sinking material - the top of the deep-reaching solar convection zone. Convection plays a role for the thermal structure of the solar interior and the dynamo acting there, for the stratification of the photosphere, where most of the visible light is emitted, as well as for the energy budget of the spectacular processes in the chromosphere and corona. Convective stellar atmospheres can be modeled by numerically solving the coupled equations of (magneto)hydrodynamics and non-local radiation transport in the presence of a gravity field. The CO5BOLD code described in this article is designed for so-called ''realistic'' simulations that take into account the detailed microphysics under the conditions in solar or stellar surface layers (equation-of-state and optical properties of the matter). These simulations indeed deserve the label ''realistic'' because they reproduce the various observables very well - with only minor differences between different implementations. The agreement with observations has improved over time and the simulations are now well-established and have been performed for a number of stars. Still, severe challenges are encountered when it comes to extending these simulations to include ideally the entire star or substellar object: the strong stratification leads to completely different conditions in the interior, the photosphere, and the corona. Simulations have to cover spatial scales from the sub-granular level to the stellar diameter and time scales from photospheric wave travel times to stellar rotation or dynamo cycle periods. Various non-equilibrium processes have to be taken into account. Last but not least, realistic simulations are based on detailed microphysics and depend on the quality of the input data, which can be the actual accuracy limiter. This article provides an overview of the physical problem and the numerical solution and the capabilities of CO5BOLD, illustrated with a number of applications.

[1]  Kenneth G. Powell,et al.  Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results , 1994 .

[2]  H. Spruit,et al.  Is stellar granulation turbulence , 1997 .

[3]  A. Vögler,et al.  Three-dimensional simulations of magneto-convection in the solar photosphere , 2004 .

[4]  E. Spiegel,et al.  Stellar convection theory. I. The anelastic Modal equations , 1976 .

[5]  H. Gail,et al.  Dust Formation in Stellar Winds , 1985 .

[6]  Bernd Freytag,et al.  Three-dimensional simulations of the atmosphere of an AGB star , 2008 .

[7]  R. Blomme,et al.  Line formation in solar granulation VI. [Cl], Cl, CH and C2 lines and the photospheric C abundance , 2004, astro-ph/0410681.

[8]  M. Asplund,et al.  Testing 3D solar models against observations - center-to-limb variations of oxygen lines, spatially-resolved line formation and probing for departures from LTE , 2008 .

[9]  M. Schüssler,et al.  Models of Magnetic Flux Sheets , 1989 .

[10]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars. I. Atmospheric structure and dynamics , 1998 .

[11]  B. Pagel,et al.  Stellar atmospheres , 1978, Nature.

[12]  Observation of a short-lived pattern in the solar chromosphere , 2006, astro-ph/0609382.

[13]  R. Rezaei,et al.  The Horizontal Internetwork Magnetic Field: Numerical Simulations in Comparison to Observations with Hinode , 2008, 0801.4915.

[14]  A. Brandenburg,et al.  Magnetoconvection and dynamo coefficients: Dependence of the alpha-effect on rotation and magnetic field , 2001, astro-ph/0108274.

[15]  Y. Suematsu,et al.  EXCITATION OF SLOW MODES IN NETWORK MAGNETIC ELEMENTS THROUGH MAGNETIC PUMPING , 2011, 1102.5164.

[16]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[17]  Thierry Emonet,et al.  On the Interaction between Convection and Magnetic Fields , 2003 .

[18]  M. Roth,et al.  Magneto‐acoustic wave propagation and mode conversion in a magnetic solar atmosphere: Comparing results from the CO5BOLD code with ray theory , 2010, 1009.5586.

[19]  L. Auer,et al.  Short characteristic integration of radiative transfer problems: Formal solution in two-dimensional slabs , 1988 .

[20]  Å. Nordlund,et al.  Bulk Heating and Slender Magnetic Loops in the Solar Corona , 2002 .

[21]  E. Caffau,et al.  3D hydrodynamical CO5BOLD model atmospheres of late-type giants: chemical abundances from molecular lines , 2010, 1010.1722.

[22]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[23]  A. Vögler Effects of non-grey radiative transfer on 3D simulations of solar magneto-convection , 2004 .

[24]  V. Krishan,et al.  Alfvén-like mode in partially ionized solar atmosphere , 2010 .

[25]  Paul Glaister,et al.  An approximate linearised Riemann solver for the Euler equations for real gases , 1988 .

[26]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[27]  Robert F. Stein,et al.  Solar Small-Scale Magnetoconvection , 2006 .

[28]  P. Bonifacio,et al.  The photospheric solar oxygen project. I. Abundance analysis of atomic lines and influence of atmosp , 2008, 0805.4398.

[29]  G. Fisher,et al.  Improving Large-scale Convection Zone-to-Corona Models , 2010, 1005.0641.

[30]  R. Kurucz Atlas: a Computer Program for Calculating Model Stellar Atmospheres , 1970 .

[31]  James A. Klimchuk,et al.  On Solving the Coronal Heating Problem , 2006 .

[32]  M. Schüssler,et al.  CONVECTIVE INTENSIFICATION OF SOLAR SURFACE MAGNETIC FIELDS : RESULTS OF NUMERICAL EXPERIMENTS , 1998 .

[33]  P. Bonifacio,et al.  Lithium in the Globular Cluster NGC 6397: Evidence for dependence on evolutionary status , 2009, 0909.0983.

[34]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[35]  I. Baraffe,et al.  Towards a new generation of multi-dimensional stellar evolution models: development of an implicit hydrodynamic code , 2011, 1103.1524.

[36]  A. Tritschler,et al.  The solar chromosphere at high resolution with IBIS. IV. Dual-line evidence of heating in chromospheric network , 2009, 0906.2083.

[37]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[38]  James M. Stone,et al.  Magnetohydrodynamical non‐radiative accretion flows in two dimensions , 2001 .

[39]  A. Malagoli,et al.  Turbulent supersonic convection in three dimensions , 1990 .

[40]  S. M. Chitre,et al.  The Current State of Solar Modeling , 1996, Science.

[41]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[42]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[43]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[44]  Bernd Freytag,et al.  Spots on the surface of Betelgeuse -- Results from new 3D stellar convection models , 2002 .

[45]  U. Jørgensen,et al.  Dynamic model atmospheres of AGB stars - III. Effects of frequency-dependent radiative transfer , 2003 .

[46]  M. Schuessler,et al.  A solar surface dynamo , 2007, astro-ph/0702681.

[47]  First local helioseismic experiments with CO5BOLD , 2007, astro-ph/0701029.

[48]  J. Toomre,et al.  Two Dimensional Compressible Convection Extending Over Multiple Scale Heights , 1984 .

[49]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[50]  H. Ludwig,et al.  Solution to the problem of the surface gravity distribution of cool DA white dwarfs from improved 3D model atmospheres , 2011, 1106.6007.

[51]  F. Allard,et al.  Numerical simulations of surface convection in a late M-dwarf , 2002, astro-ph/0208584.

[52]  E. Parker The Origin of Magnetic Fields , 1970 .

[53]  C. Cannon Line transfer in two dimensions , 1970 .

[54]  L. Lindegren,et al.  Solar granulation - Influence of convection on spectral line asymmetries and wavelength shifts , 1981 .

[55]  R. Stein,et al.  Excitation of Chromospheric Wave Transients by Collapsing Granules , 2000 .

[56]  E. Spiegel,et al.  The Eddington Approximation in the Radiative Heat Equation , 1966 .

[57]  M. Schüssler,et al.  Model calculations of magnetic flux tubes. II: Stationary results for solar magnetic elements , 1984 .

[58]  N. Weiss,et al.  Convection and magnetic fields in stars , 1981 .

[59]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[60]  Å. Nordlund,et al.  Accurate Radiation Hydrodynamics and MHD Modeling of 3‐D Stellar Atmospheres , 2009 .

[61]  R. Rezaei,et al.  Hinode observations reveal boundary layers of magnetic elements in the solar photosphere , 2007, 0711.0408.

[62]  W. Rossow Cloud microphysics: Analysis of the clouds of Earth, Venus, Mars and Jupiter , 1978 .

[63]  C. Schrijver Catastrophic cooling and high-speed downflow in quiescent solar coronal loops observed with TRACE , 2001 .

[64]  P. Murdin,et al.  Encyclopedia of Astronomy and Astrophysics , 2002 .

[65]  Hydrodynamical non-radiative accretion flows in two dimensions , 1999, astro-ph/9908185.

[66]  S. Sofia,et al.  Compressible magnetic convection : formulation and two-dimensional models , 1991 .

[67]  Cambridge,et al.  MHD Simulations of Penumbra Fine Structure , 2006, astro-ph/0612648.

[68]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[69]  A. Malagoli,et al.  Turbulent compressible convection , 1991 .

[70]  W. Abbett,et al.  The Magnetic Connection between the Convection Zone and Corona in the Quiet Sun , 2007 .

[71]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[72]  R. Stothers,et al.  Luminosities, masses and periodicities of massive red supergiants , 1971 .

[73]  R. Stein,et al.  Supergranulation Scale Convection Simulations , 2009 .

[74]  K. Powell,et al.  Axisymmetric Modeling of Cometary Mass Loading on an Adaptively Refined Grid: Hydrodynamic Results , 2013 .

[75]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[76]  M. Schuessler,et al.  Strong horizontal photospheric magnetic field in a surface dynamo simulation , 2008, 0801.1250.

[77]  Allan Sacha Brun,et al.  Global-Scale Turbulent Convection and Magnetic Dynamo Action in the Solar Envelope , 2004 .

[78]  F. Millour,et al.  VLTI/AMBER spectro-interferometric imaging of VX Sagittarii's inhomogenous outer atmosphere , 2009, 0911.4422.

[79]  T. Beers,et al.  First stars XI. Chemical composition of the extremely metal-poor dwarfs in the binary CS 22876-032 , 2007, 0712.2949.

[80]  Robert L. Kurucz,et al.  ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera , 2005 .

[81]  G. D. Nelson A two-dimensional solar model , 1978 .

[82]  S. Poedts,et al.  Analysis of the effect of neutral flow on the waves in the solar photosphere , 2007 .

[83]  M. Carlsson,et al.  Dynamic Hydrogen Ionization , 2002, astro-ph/0202313.

[84]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[85]  R. Rutten,et al.  Magnetic Coupling between the Interior and Atmosphere of the Sun , 2010 .

[86]  M. Schüssler,et al.  UNIVERSALITY OF THE SMALL-SCALE DYNAMO MECHANISM , 2011, 1105.0546.

[87]  F. Kneer,et al.  Acoustic waves in the solar atmosphere at high spatial resolution , 2009 .

[88]  M. Norman,et al.  ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I - The hydrodynamic algorithms and tests. II - The magnetohydrodynamic algorithms and tests , 1992 .

[89]  E. Böhm-Vitense,et al.  Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen , 1958 .

[90]  P. Bonifacio,et al.  Sulphur abundances in halo stars from multiplet 3 at 1045 nm , 2010, 1003.4914.

[91]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[92]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[93]  H. Ludwig,et al.  3D simulations of M star atmosphere velocities and their influence on molecular FeH lines , 2009, 0910.3493.

[94]  Dust formation in winds of long-period variables V. The influence of micro-physical dust properties in carbon stars , 2002, astro-ph/0210282.

[95]  Luigi Vigevano,et al.  An Evaluation of Roe's Scheme Generalizations for Equilibrium Real Gas Flows , 1997 .

[96]  K. Chan,et al.  ADI on staggered mesh—A method for the calculation of compressible convection , 1982 .

[97]  E. Avrett,et al.  Radiative transfer in two-component stellar atmospheres , 1971 .

[98]  D. Mihalas,et al.  Two-dimensional radiative transfer. I - Planar geometry , 1978 .

[99]  Scott W. McIntosh,et al.  Waves in the Magnetized Solar Atmosphere. II. Waves from Localized Sources in Magnetic Flux Concentrations , 2003 .

[100]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[101]  M. Steffen A simple method for monotonic interpolation in one dimension. , 1990 .

[102]  T. Beers,et al.  The metal–poor end of the Spite plateau , 2009, Proceedings of the International Astronomical Union.

[103]  P. Bonifacio,et al.  Convection and 6Li in the atmospheres of metal-poor halo stars , 2009, Proceedings of the International Astronomical Union.

[105]  Martin Schwarzschild,et al.  On the scale of photospheric convection in red giants and supergiants. , 1975 .

[106]  Peter H. Hauschildt,et al.  Parallel Implementation of the PHOENIX Generalized Stellar Atmosphere Program. II. Wavelength Parallelization , 1996, astro-ph/9709238.

[107]  P. Matthews,et al.  Photospheric convection in strong magnetic fields , 1996 .

[108]  Peter H. Hauschildt,et al.  Model atmospheres for M (sub)dwarf stars. 1: The base model grid , 1995, astro-ph/9601150.

[109]  S. Solanki,et al.  QUIET-SUN INTENSITY CONTRASTS IN THE NEAR-ULTRAVIOLET AS MEASURED FROM Sunrise , 2010, 1009.1050.

[110]  Excitation of solar-like oscillations across the HR diagram , 2006, astro-ph/0611762.

[111]  B. Gudiksen,et al.  An Ab Initio Approach to Solar Coronal Loops , 2004, astro-ph/0407267.

[112]  D. Psaltis Two-Dimensional Radiative Transfer , 2001 .

[113]  F. Allard,et al.  The role of convection, overshoot, and gravity waves for the transport of dust in M dwarf and brown dwarf atmospheres , 2010, 1002.3437.

[114]  U. Ziegler,et al.  Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code , 2005 .

[115]  Edward A. Spiegel,et al.  The Smoothing of Temperature Fluctuations by Radiative Transfer . , 1957 .

[116]  W. Dobler,et al.  Magnetic Field Generation in Fully Convective Rotating Spheres , 2006 .

[117]  M. Axer,et al.  Balmer lines in cool dwarf stars. I: Basic influence of atmospheric models , 1993 .

[118]  M. Carlsson,et al.  Radiation shock dynamics in the solar chromosphere - results of numerical simulations , 1994 .

[119]  M. Schüssler,et al.  Penumbral Structure and Outflows in Simulated Sunspots , 2009, Science.

[120]  M. Asplund Line formation in solar granulation , 2000 .

[121]  J. Toomre,et al.  Three-dimensional compressible convection at low prandtl numbers , 1990 .

[122]  C. Helling,et al.  Dust in brown dwarfs. II. The coupled problem of dust formation and sedimentation , 2003 .

[123]  Robert F. Stein,et al.  Does a nonmagnetic solar chromosphere exist , 1995 .

[124]  H. Gail,et al.  Dust formation in stellar winds. IV: Heteromolecular carbon grain formation and growth , 1988 .

[125]  A. Vecchio,et al.  The solar chromosphere at high resolution with IBIS - I. New insights from the Ca II 854.2 nm line , 2007, 0709.2417.

[126]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[127]  M. Carlsson,et al.  Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere , 2007, 0709.3751.

[128]  N. Weiss,et al.  Convection-driven Emergence of Small-Scale Magnetic Fields and their Role in Coronal Heating and Solar Wind Acceleration , 2008 .

[129]  T. Berger,et al.  The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter , 2008 .

[130]  E. Caffau,et al.  Chemical abundances in metal-poor giants: limitations imposed by the use of classical 1D stellar atmosphere models , 2010, 1010.2507.

[131]  M. Steffen,et al.  Line Formation in Convective Stellar Atmospheres , 1999 .

[132]  Fausto Cattaneo,et al.  On the Origin of Magnetic Fields in the Quiet Photosphere , 1999 .

[133]  E. Caffau,et al.  Can we trust elemental abundances derived in late-type giants with the classical 1D stellar atmosphere models? , 2009, Proceedings of the International Astronomical Union.

[134]  A. Lagg,et al.  Coupling from the Photosphere to the Chromosphere and the Corona , 2008, 0809.0987.

[135]  Oskar Steiner,et al.  Dynamic Interaction of Convection with Magnetic Flux Sheets: First Results of a New MHD Code , 1994 .

[136]  K. L. Chan,et al.  Radiative hydrodynamics models of stellar convection , 2007 .

[137]  S. Wedemeyer-Bohm,et al.  On the continuum intensity distribution of the solar photosphere , 2009, 0905.0705.

[138]  D. Buscher,et al.  Detection of a bright feature on the surface of Betelgeuse. , 1990 .

[139]  MAGNETOHYDRODYNAMIC SIMULATION FROM THE CONVECTION ZONE TO THE CHROMOSPHERE , 2005 .

[140]  J. Zahn Stellar convection theory , 1980 .

[141]  P. Bonifacio,et al.  Cu i resonance lines in turn-off stars of NGC 6752 and NGC 6397 Effects of granulation from CO5BOLD models , 2010, 1009.1848.

[142]  Åke Nordlund,et al.  Numerical Simulations of the Solar Granulation , 1980 .

[143]  P. Bonifacio,et al.  The CIFIST 3D model atmosphere grid , 2009, 0908.4496.

[144]  Time-dependent hydrogen ionisation in 3D simulations of the solar chromosphere. Methods and first results , 2006, astro-ph/0608620.

[145]  D. E. Kerr Physics of Fully Ionized Gases. , 1956 .

[146]  I. Kamp,et al.  Carbon monoxide in the solar atmosphere I. Numerical method and two-dimensional models , 2005, astro-ph/0503496.

[147]  Robert F. Stein,et al.  Simulations of Solar Granulation. I. General Properties , 1998 .

[148]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[149]  W. Thi,et al.  Dust in brown dwarfs and extra-solar planets - I. Chemical composition and spectral appearance of quasi-static cloud layers , 2008, 0803.4315.

[150]  M. Norman,et al.  ZEUS-2D : a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II : The magnetohydrodynamic algorithms and tests , 1992 .

[151]  Bernd Freytag,et al.  Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere , 2010, 1003.1190.

[152]  M. Carlsson,et al.  Twisted Flux Tube Emergence From the Convection Zone to the Corona , 2007, 0906.5464.

[153]  K. Eriksson,et al.  Grid of model atmospheres for metal-deficient giant stars. I , 1975 .

[154]  V. Sheminova,et al.  Numerical simulation of the interaction between solar granules and small-scale magnetic fields , 1996, 1011.1778.

[155]  O. Steiner,et al.  Dynamical Interaction of Solar Magnetic Elements and Granular Convection: Results of a Numerical Simulation , 1998 .

[156]  L. H. Thomas THE RADIATION FIELD IN A FLUID IN MOTION , 1930 .

[157]  J. Toomre,et al.  Stellar convection theory. III - Dynamical coupling of the two convection zones in A-type stars by penetrative motions , 1981 .

[158]  M. Knoelker,et al.  RADIATIVE MAGNETOHYDRODYNAMIC SIMULATION OF SUNSPOT STRUCTURE , 2008, 0808.3294.

[159]  Vasilis Archontis,et al.  The Three-dimensional Interaction between Emerging Magnetic Flux and a Large-Scale Coronal Field: Reconnection, Current Sheets, and Jets , 2005 .

[160]  Holistic MHD-Simulation from the Convection Zone to the Chromosphere , 2006 .

[161]  R. LeVeque Numerical methods for conservation laws , 1990 .

[162]  S. B. F. Dorch,et al.  Waves in the Magnetized Solar Atmosphere. I. Basic Processes and Internetwork Oscillations , 2002 .

[163]  Juri Toomre,et al.  Magnetic fields interacting with nonlinear compressible convection , 1988 .

[164]  Gary A. Glatzmaier,et al.  Numerical Simulations of Stellar Convective Dynamos , 1984 .

[165]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[166]  P. Bonifacio,et al.  Impact of granulation effects on the use of Balmer lines as temperature indicators , 2009, 0906.4697.

[167]  G. Mellema,et al.  Hydrodynamical models of aspherical planetary nebulae , 1991 .

[168]  R. Klein,et al.  Dust in brown dwarfs - I. Dust formation under turbulent conditions on microscopic scales , 2001 .

[169]  M. Cheung,et al.  Moving magnetic tubes: fragmentation, vortex streets and the limit of the approximation of thin flux tubes , 2006 .

[170]  P. Cally What to look for in the seismology of solar active regions , 2007 .

[171]  A. Wray,et al.  Realistic Numerical Simulations of Solar Convection and Oscillations in Magnetic Regions , 2008 .

[172]  A. M. Title,et al.  SIMULATION OF THE FORMATION OF A SOLAR ACTIVE REGION , 2010, 1006.4117.

[173]  S. Wedemeyer,et al.  Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere , 2003, astro-ph/0311273.

[174]  G. Newkirk Carbon Monoxide in the Solar Atmosphere. , 1957 .

[175]  Stuart M. Jefferies,et al.  The Energy Flux of Internal Gravity Waves in the Lower Solar Atmosphere , 2008 .

[176]  John N. Bahcall,et al.  Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties , 2001 .

[177]  P. Petitjean,et al.  Line shift, line asymmetry, and the 6Li/7Li isotopic ratio determination , 2007, 0708.3819.

[178]  M. Proctor,et al.  Oscillatory convection in sunspot umbrae , 1990, Monthly Notices of the Royal Astronomical Society.

[179]  J. R. Elliott,et al.  Computational aspects of a code to study rotating turbulent convection in spherical shells , 1999, Parallel Comput..

[180]  M. Carlsson,et al.  The stellar atmosphere simulation code Bifrost , 2011, 1105.6306.

[181]  A. Skumanich,et al.  The formation of resonance lines in multidimensional media. II. Radiation operators and their numerical representation , 1973 .

[182]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[183]  Gary A. Glatzmaier,et al.  Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method , 1984 .

[184]  P. Janhunen,et al.  A Positive Conservative Method for Magnetohydrodynamics Based on HLL and Roe Methods , 2000 .

[185]  M. Rieutord,et al.  MHD simulations of the solar photosphere , 2012, 1206.6630.

[186]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[187]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[188]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[189]  Åke Nordlund,et al.  Numerical simulations of the solar granulation. I - Basic equations and methods , 1982 .

[190]  T. Clune,et al.  Pumping of Magnetic Fields by Turbulent Penetrative Convection , 1998 .

[191]  B. Plez,et al.  Radiative hydrodynamics simulations of red supergiant stars - IV. Gray versus non-gray opacities , 2011, 1109.3619.

[192]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[193]  Robert F. Stein,et al.  Solar Surface Convection , 2009, Living reviews in solar physics.

[194]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[195]  P. Lenz,et al.  ANTARES – A Numerical Tool for Astrophysical RESearch with applications to solar granulation , 2009, 0905.0177.

[196]  O. Steiner Magnetic Coupling in the Quiet Solar Atmosphere , 2009, 0904.2026.

[197]  The metal-poor end of the Spite plateau - I. Stellar parameters, metallicities, and lithium abundances , 2010, 1003.4510.

[198]  M. Roth,et al.  Modification of wave propagation and wave travel-time by the presence of magnetic fields in the solar network atmosphere , 2012 .

[199]  H. Ludwig,et al.  HYDRODYNAMICAL MODELS OF STELLAR CONVECTION : THE ROLE OF OVERSHOOT IN DA WHITE DWARFS, A-TYPE STARS, AND THE SUN , 1996 .

[200]  USA,et al.  Numerical 3D constraints on convective eddy time-correlations: Consequences for stochastic excitation of solar p modes , 2003, astro-ph/0304457.

[201]  P. Bonifacio,et al.  Galactic evolution of oxygen - OH lines in 3D hydrodynamical model atmospheres , 2010, 1005.3754.

[202]  Juri Toomre,et al.  Stellar convection theory. II - Single-mode study of the second convection zone in an A-type star , 1976 .

[203]  M. Carlsson,et al.  3d Numerical Models of the Chromosphere, Transition Region, and Corona , 2007, 0704.1511.

[204]  B. Plez,et al.  Radiative hydrodynamics simulations of red supergiant stars - I. interpretation of interferometric observations , 2009, 0907.1860.

[205]  Hirohisa Hara,et al.  ON REDSHIFTS AND BLUESHIFTS IN THE TRANSITION REGION AND CORONA , 2010, 1001.4769.

[206]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[207]  P. Bonifacio,et al.  Three carbon-enhanced metal-poor dwarf stars from the SDSS - Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres , 2010, 1002.1670.

[208]  M. Figueroa,et al.  Energy for Transport , 2014 .

[209]  Forrest J. Rogers,et al.  Spin-Orbit Interaction Effects on the Rosseland Mean Opacity , 1992 .

[210]  Carolus J. Schrijver,et al.  Solar surface magnetism , 1994 .