Reflectance-based classification of color edges

We aim at using color information to classify the physical nature of edges in video. To achieve physics-based edge classification, we first propose a novel approach to color edge detection by automatic noise-adaptive thresholding derived from sensor noise analysis. Then, we present a taxonomy on color edge types. As a result, a parameter-free edge classifier is obtained by labeling color transitions into one of the following types: (1) shadow-geometry, (2) highlight edges, (3) material edges. The proposed method is empirically verified on images showing complex real world scenes.

[1]  Wei Zhang,et al.  Multi-Scale Blur Estimation and Edge Type Classification for Scene Analysis , 1997, International Journal of Computer Vision.

[2]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[3]  Peter Wai-Ming Tsang,et al.  Suppression of false edge detection due to specular reflection in color images , 1997, Pattern Recognit. Lett..

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Jörn Ostermann,et al.  Detection of Moving Cast Shadows for Object Segmentation , 1999, IEEE Trans. Multim..

[6]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[7]  Djemel Ziou,et al.  Edge Detection Techniques-An Overview , 1998 .

[8]  J. Taylor An Introduction to Error Analysis , 1982 .