Epitaxial stabilization of an orthorhombic Mg-Ti-O superconductor

Zhuang Ni,1, 2 Wei Hu,1 Qinghua Zhang,1 Yanmin Zhang,1 Peiyu Xiong,1 Qian Li,1, ∗ Jie Yuan,1, 3 Qihong Chen,1 Beiyi Zhu,1 Hua Zhang,1 Xiaoli Dong,1, 2, 3 Lin Gu,1, 2, 3 and Kui Jin1, 2, 3 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

[1]  R. Vasudevan,et al.  Anisotropic epitaxial stabilization of a low-symmetry ferroelectric with enhanced electromechanical response , 2021, Nature Materials.

[2]  K. Zou,et al.  Single-crystalline epitaxial TiO film: A metal and superconductor, similar to Ti metal , 2021, Science Advances.

[3]  C. Ma,et al.  Mg-doping enhanced superconductivity and ferromagnetism in Ti1−Mg O films , 2020 .

[4]  Basic Notions , 2020, English around the World.

[5]  L. Kourkoutis,et al.  Strain-stabilized superconductivity , 2020, Nature communications.

[6]  Chao Zhang,et al.  Quantum Griffiths singularities in TiO superconducting thin films with insulating normal states , 2019, NPG Asia Materials.

[7]  Xiaoguang Li,et al.  Structure and transport properties of titanium oxide (Ti2O, TiO1+, and Ti3O5) thin films , 2019, Journal of Alloys and Compounds.

[8]  R. Ramesh,et al.  Creating emergent phenomena in oxide superlattices , 2019, Nature Reviews Materials.

[9]  M. Döbeli,et al.  Influence of Plume Properties on Thin Film Composition in Pulsed Laser Deposition , 2018, Advanced Materials Interfaces.

[10]  Lang Chen,et al.  Observation of superconductivity in structure-selected Ti2O3 thin films , 2018, NPG Asia Materials.

[11]  Qinghua Zhang,et al.  The effects of oxygen in spinel oxide Li1+xTi2−xO4−δ thin films , 2018, Scientific Reports.

[12]  M. G. Kostenko,et al.  Stable Ti9O10 nanophase grown from nonstoichiometric titanium monoxide TiOy nanopowder , 2017 .

[13]  Fuqiang Huang,et al.  Enhanced Superconductivity in Rock-Salt TiO , 2017, ACS omega.

[14]  J. Kitchin,et al.  First-Principles Investigation of the Epitaxial Stabilization of Oxide Polymorphs: TiO2 on (Sr,Ba)TiO3. , 2017, ACS applied materials & interfaces.

[15]  Xiaoguang Li,et al.  Enhanced superconductivity in TiO epitaxial thin films , 2016, 1612.06506.

[16]  A. Ohtomo,et al.  Superconductivity in Ti4O7 and γ-Ti3O5 films , 2016, Scientific Reports.

[17]  Lauren Garten,et al.  Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection. , 2016, ACS applied materials & interfaces.

[18]  Satoshi Watanabe,et al.  Scanning tunnelling spectroscopy of superconductivity on surfaces of LiTi2O4(111) thin films , 2016, Nature Communications.

[19]  D. Pines Emergent behavior in strongly correlated electron systems , 2016, Reports on progress in physics. Physical Society.

[20]  Jiangping Hu Identifying the genes of unconventional high temperature superconductors , 2015, Science bulletin.

[21]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[22]  Xianhui Chen,et al.  Crystal structure and phase diagrams of iron-based superconductors , 2015, Science China Materials.

[23]  R. Greene,et al.  Anomalous magnetoresistance in the spinel superconductor LiTi2O4 , 2014, Nature Communications.

[24]  X. H. Chen,et al.  Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. , 2014, Nature materials.

[25]  C. M. Folkman,et al.  Reversible redox reactions in an epitaxially stabilized SrCoO(x) oxygen sponge. , 2013, Nature materials.

[26]  R. Dittmann,et al.  Pulsed laser ablation of complex oxides: The role of congruent ablation and preferential scattering for the film stoichiometry , 2012 .

[27]  E. Dagotto,et al.  Magnetism and its microscopic origin in iron-based high-temperature superconductors , 2012, Nature Physics.

[28]  Y. Y. Chen,et al.  Role of 3d electrons in the rapid suppression of superconductivity in the dilute V doped spinel superconductor LiTi2O4 , 2011 .

[29]  M. Mallepell,et al.  The origin of oxygen in oxide thin films: Role of the substrate , 2010 .

[30]  Jørgen Schou,et al.  Physical aspects of the pulsed laser deposition technique: The stoichiometric transfer of material from target to film , 2009 .

[31]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[32]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[33]  O. Gorbenko,et al.  Epitaxial Stabilization of Oxides in Thin Films , 2002 .

[34]  E. Moshopoulou Superconductivity in the Spinel Compound LiTi2O4 , 2000 .

[35]  D. Johnston,et al.  High temperature superconductivity in the LiTiO ternary system , 1973 .