Quantum Implementation of Parrondo's Paradox

We propose a quantum implementation of a capital-dependent Parrondo's paradox that uses O(log2(n)) qubits, where n is the number of Parrondo games. We present its implementation in the quantum computer language (QCL) and show simulation results.

[1]  Abbott,et al.  New paradoxical games based on brownian ratchets , 2000, Physical review letters.

[2]  David A. Meyer,et al.  Parrondo Games as Lattice Gas Automata , 2001 .

[3]  D. Abbott,et al.  Quantum walks with history dependence , 2003, quant-ph/0311009.

[4]  J. Sladkowski,et al.  The next stage: quantum game theory , 2003, quant-ph/0308027.

[5]  Derek Abbott,et al.  Quantum models of Parrondo's games , 2003 .

[6]  Derek Abbott,et al.  AN INTRODUCTION TO QUANTUM GAME THEORY , 2002 .

[7]  Derek Abbott,et al.  Parrondo's paradox , 1999 .

[8]  Neil Johnson,et al.  Parrondo Games and Quantum Algorithms , 2002 .

[9]  Bernhard Ömer,et al.  Quantum Programming in QCL , 2000 .

[10]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[11]  Edward W. Piotrowski,et al.  An Invitation to Quantum Game Theory , 2002, ArXiv.

[12]  Neil F. Johnson,et al.  Exploiting randomness in quantum information processing , 2002 .

[13]  D. Abbott,et al.  Quantum Parrondo's games , 2002 .

[14]  Derek Abbott,et al.  The paradox of Parrondo's games , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Charles V. Benton Mathematical physics research at the cutting edge , 2004 .