Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species

[1]  H. Barnes,et al.  THE SIZE DISTRIBUTION OF FRAMBOIDAL PYRITE IN MODERN SEDIMENTS : AN INDICATOR OF REDOX CONDITIONS , 1996 .

[2]  D. Rickard,et al.  Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms , 1995 .

[3]  D. Vaughan,et al.  Transformation of synthetic mackinawite to hexagonal pyrrhotite: A kinetic study , 1995 .

[4]  H. Barnes,et al.  Reactions Forming Pyrite from Precipitated Amorphous Ferrous Sulfide , 1995 .

[5]  M. Schoonen,et al.  Geochemical transformations of sedimentary sulfur. , 1995 .

[6]  H. Nesbitt,et al.  Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation , 1995 .

[7]  K. Nealson,et al.  CHEMICAL AND BIOLOGICAL REDUCTION OF MN (III)-PYROPHOSPHATE COMPLEXES : POTENTIAL IMPORTANCE OF DISSOLVED MN (III) AS AN ENVIRONMENTAL OXIDANT , 1995 .

[8]  H. Nesbitt,et al.  X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: Distribution of oxidized species with depth , 1995 .

[9]  T. Eglinton,et al.  Sulfonates: A novel class of organic sulfur compounds in marine sediments , 1994 .

[10]  M. Keller,et al.  Formation of amide bonds without a condensation agent and implications for origin of life , 1994, Nature.

[11]  M. Schoonen,et al.  Removal of dissolved oxygen from water: A comparison of four common techniques. , 1994, Talanta.

[12]  P. Halbach,et al.  Geology and mineralogy of massive sulfide ores from the central Okinawa Trough, Japan , 1993 .

[13]  H. Ohmoto,et al.  3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. , 1993, Science.

[14]  R. Dick Sulphur Cycling on the Continents: Wetlands, Terrestrial Ecosystems, and Associated Water Bodies. 1992 , 1993 .

[15]  Z. Sawłowicz,et al.  Pyrite framboids and their development: a new conceptual mechanism , 1993 .

[16]  B. Sulzberger,et al.  Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively , 1992 .

[17]  M. Coleman,et al.  Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin , 1991 .

[18]  M. Schoonen,et al.  Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes , 1991 .

[19]  G. Luther Pyrite synthesis via polysulfide compounds , 1991 .

[20]  F. Millero The oxidation of H2S in Framvaren Fjord , 1991 .

[21]  M. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C , 1991 .

[22]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[23]  T. Ferdelman,et al.  Sulfur enrichment of humic substances in a Delaware salt marsh sediment core , 1991 .

[24]  B. Jørgensen,et al.  Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark , 1990 .

[25]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[26]  B. Jørgensen,et al.  Isotope exchange reactions with radiolabeled sulfur compounds in anoxic seawater , 1990 .

[27]  K. Mopper,et al.  Determination of sulfite and thiosulfate in aqueous samples including anoxic seawater by liquid chromatography after derivatization with 2,2'-dithiobis(5-nitropyridine) , 1990 .

[28]  D. Rickard Experimental concentration-time curves for the iron(II) sulphide precipitation process in aqueous solutions and their interpretation☆ , 1989 .

[29]  R. Aller,et al.  Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments , 1988 .

[30]  M. Schoonen,et al.  An approximation of the second dissociation constant for H2S , 1988 .

[31]  F. Millero,et al.  The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters , 1987 .

[32]  H. Barnes,et al.  Marcasite precipitation from hydrothermal solutions , 1986 .

[33]  H. Barnes,et al.  Formation of cubic FeS , 1986 .

[34]  A. Giblin,et al.  Polarographic analysis of sulfur species in marine porewaters1 , 1985 .

[35]  Robert Raiswell,et al.  Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory , 1983 .

[36]  B. Jørgensen,et al.  Seasonal dynamics of elemental sulfur in two coastal sediments , 1982 .

[37]  J. W. Cobble,et al.  High-temperature thermodynamic data for species in aqueous solution. Final report , 1982 .

[38]  Y. Shieh,et al.  Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures , 1979 .

[39]  J. Ostwald,et al.  The relationship between euhedral and framboidal pyrite in base-metal sulphide ores , 1979, Mineralogical Magazine.

[40]  J. Boulègue Equilibria in a sulfide rich water from Enghien-les-Bains, France☆ , 1977 .

[41]  B. Jørgensen The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)1 , 1977 .

[42]  G. Heunisch Stoichiometry of the reaction of sulfites with hydrogen sulfide ion , 1977 .

[43]  B. B. Jørgensen,et al.  Bacterial sulfate reduction within reduced microniches of oxidized marine sediments , 1977 .

[44]  J. Ostwald,et al.  Notes on framboidal pyrite from Allandale New South Wales, Australia , 1977 .

[45]  D. Rickard Kinetics and mechanism of pyrite formation at low temperatures , 1975 .

[46]  S. Horiuchi,et al.  Morphology and imperfection of hydrothermally synthesized greigite (Fe3S4) , 1974 .

[47]  I. Kaplan,et al.  Pyrite Framboid Formation; Laboratory Synthesis and Marine Sediments , 1973 .

[48]  J. Morris,et al.  Kinetics of oxidation of aqueous sulfide by oxygen , 1972 .

[49]  E. R. Allen,et al.  The Sulfur Cycle , 1972, Science.

[50]  M. Farrand Framboidal sulphides precipitated synthetically , 1970 .

[51]  J. Kalliokoski,et al.  Morphology, mode of formation, and diagenetic changes in framboids , 1969 .

[52]  W. B. Roberts,et al.  The chemistry of pyrite formation in aqueous solution and its relation to the depositional environment , 1969 .

[53]  R. Berner thermodynamic stability of sedimentary iron sulfides , 1967 .

[54]  R. Berner Iron Sulfides Formed from Aqueous Solution at Low Temperatures and Atmospheric Pressure , 1964, The Journal of Geology.

[55]  P. Cloke The geologic role of polysulfides—Part I The distribution of ionic species in aqueous sodium polysulfide solutions , 1963 .

[56]  P. Cloke The geologic role of polysulfides—Part II: The solubility of acanthite and covellite in sodium polysulfide solutions , 1963 .

[57]  K. O. Emery,et al.  The distribution and isotopic abundance of sulphur in recent marine sediments off southern California , 1963 .

[58]  W. Uytenbogaardt Tables for Microscopic Identification of Ore Minerals , 1951 .

[59]  M. Schoonen,et al.  Chemistry of iron sulfides in sedimentary environments , 1995 .

[60]  B. Jørgensen,et al.  Thiosulfate and sulfite distributions in porewater of marine sediments related to manganese, iron, and sulfur geochemistry , 1994 .

[61]  A. R. Pratt,et al.  X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation , 1994 .

[62]  J. Morse,et al.  Coprecipitation and adsorption of Mn(II) with mackinawite (FeS) under conditions similar to those found in anoxic sediments , 1993 .

[63]  A. Schimmelmann,et al.  Evolutionary changes over the last 1000 years of reduced sulfur phases and organic carbon in varved sediments of the Santa Barbara Basin, California , 1993 .

[64]  B. Jørgensen,et al.  Sulfide oxidation in the anoxic Black Sea chemocline , 1991 .

[65]  R. Howarth,et al.  Sulfur, iron and organic carbon fluxes in the Black Sea: sulfur isotopic evidence for origin of sulfur fluxes , 1991 .

[66]  J. Damsté,et al.  Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere : state of the art and future research , 1990 .

[67]  H. Taylor,et al.  Stable isotopes in high temperature geological processes , 1986 .

[68]  H. Barnes,et al.  Hydrothermal replacement of calcite by sphalerite in a temperature gradient , 1985 .

[69]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[70]  R. Howarth,et al.  Porewater evidence for a dynamic sedimentary iron cycle in salt marshes. [Spartina alterniflora] , 1984 .

[71]  P. Taylor,et al.  On the conversion of mackinawite to greigite , 1979 .

[72]  T. E. Rummery,et al.  Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160°C , 1979 .

[73]  M. Hoffmann Kinetics and mechanism of oxidation of hydrogen sulfide by hydrogen peroxide in acidic solution , 1977 .

[74]  R. Rowell,et al.  Time dependence of the size distribution, number concentration and surface area in La Mer sulfur sols , 1975 .

[75]  L. Szekeres Analytical chemistry of the sulphur acids. , 1974, Talanta.

[76]  J. Koskikallio,et al.  A Preparative and X-Ray Powder Diffraction Study of the Polysulfides Na2S2, Na2S4 and Na2S5. , 1971 .

[77]  R. Berner Sedimentary pyrite formation , 1970 .

[78]  D. Rickard The chemistry of iron sulphide formation at low temperatures , 1969 .