Rheological and Viscometric Methods

New possibilities have recently emerged for producing optical beams with complex and intricate structures, and for the non-contact optical manipulation of matter. This book fully describes the electromagnetic theory, optical properties, methods and applications associated with this new technology. Detailed discussions are given of unique beam characteristics, such as optical vortices and other wavefront structures, the associated phase properties and photonic aspects, along with applications ranging from cold atom manipulation to optically driven micromachines. Features include: * Comprehensive and authoritative treatments of the latest research in this area of nanophotonics, written by the leading researchers * Accounts of numerous microfluidics, nanofabrication, quantum informatics and optical manipulation applications * Coverage that fully spans the subject area, from fundamental theory and simulations to experimental methods and results Graduate students and established researchers in academia, national laboratories and industry will find this book an invaluable guide to the latest technologies in this rapidly developing field.

[1]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[2]  Norman R. Heckenberg,et al.  Optical measurement of microscopic torques , 2001 .

[3]  P. Bartlett,et al.  Colloidal dynamics in polymer solutions: optical two-point microrheology measurements. , 2002, Faraday discussions.

[4]  Francesco S. Pavone,et al.  Calibration of optical tweezers with positional detection in the back focal plane , 2006, physics/0603037.

[5]  M. Sheetz,et al.  Force of single kinesin molecules measured with optical tweezers. , 1993, Science.

[6]  Levine,et al.  One- and two-particle microrheology , 2000, Physical review letters.

[7]  S. Smith,et al.  Folding-unfolding transitions in single titin molecules characterized with laser tweezers. , 1997, Science.

[8]  Francis Crick,et al.  The physical properties of cytoplasm: A study by means of the magnetic particle method Part I. Experimental , 1950 .

[9]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[10]  A. Buosciolo,et al.  New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers , 2004 .

[11]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[12]  H. Rubinsztein-Dunlop,et al.  Characterization of optically driven fluid stress fields with optical tweezers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  M. Rinaudo,et al.  Shear-rate, concentration, molecular weight, and temperature viscosity dependences of hyaluronate, a wormlike polyelectrolyte , 1993 .

[14]  K. Svoboda,et al.  Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.

[15]  Saulius Juodkazis,et al.  Size Dependence of Rotation Frequency of Individual Laser Trapped Liquid Crystal Droplets , 1999 .

[16]  Denis Wirtz,et al.  Particle Tracking Microrheology of Complex Fluids , 1997 .

[17]  Denis Wirtz,et al.  Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. , 2006, Biophysical journal.

[18]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[19]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[20]  Mark Dickinson,et al.  Laser manipulation in liquid crystals: an approach to microfluidics and micromachines , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  P A Valberg,et al.  Cytoplasmic motions, rheology, and structure probed by a novel magnetic particle method , 1985, The Journal of cell biology.

[22]  J. Tiffany The viscosity of human tears , 1991, International Ophthalmology.

[23]  Z Cheng,et al.  Rotational diffusion microrheology. , 2003, Physical review letters.

[24]  D. Pine,et al.  Microrheology as a tool for high-throughput screening , 2003 .

[25]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[26]  Yoshimasa Kawata,et al.  Application of laser-trapping technique for measuring the three-dimensional distribution of viscosity , 2002 .

[27]  S. Barnett,et al.  Free-space information transfer using light beams carrying orbital angular momentum. , 2004, Optics express.

[28]  Halina Rubinsztein-Dunlop,et al.  Integrated optomechanical microelements. , 2007, Optics express.

[29]  Optical measurement of torque exerted on an elongated object by a noncircular laser beam , 2004, physics/0403008.

[30]  Measurement of the total optical angular momentum transfer in optical tweezers. , 2006, Optics express.

[31]  H. Rubinsztein-Dunlop,et al.  Measurement of the index of refraction of single microparticles. , 2006, Physical review letters.

[32]  R. M. Simmons,et al.  Elasticity and unfolding of single molecules of the giant muscle protein titin , 1997, Nature.

[33]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[34]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[35]  T. Waigh Microrheology of complex fluids , 2005 .

[36]  Saulius Juodkazis,et al.  Viscosity measurement using a rotating laser-trapped microsphere of liquid crystal , 2006 .

[37]  D A Weitz,et al.  Two-point microrheology of inhomogeneous soft materials. , 2000, Physical review letters.

[38]  P. Chaikin,et al.  Light streak tracking of optically trapped thin microdisks. , 2002, Physical review letters.

[39]  E. Stelzer,et al.  Photonic force microscope calibration by thermal noise analysis , 1998 .